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Preface

About this book. As the title indicates, this is a textbook on
formal logic. Formal logic concerns the study of a certain kind
of language which, like any language, can serve to express states
of affairs. It is a formal language, i.e., its expressions (such as
sentences) are defined formally. This makes it a very useful lan-
guage for being very precise about the states of affairs its sen-
tences describe. In particular, in formal logic it is impossible to
be ambiguous. The study of these languages centres on the re-
lationship of entailment between sentences, i.e., which sentences
follow from which other sentences. Entailment is central because
by understanding it better we can tell when some states of affairs
must obtain provided some other states of affairs obtain. But en-
tailment is not the only important notion. We will also consider
the relationship of being satisfiable, i.e., of not being mutually
contradictory. These notions can be defined semantically, using
precise definitions of entailment based on interpretations of the
language—or proof-theoretically, using formal systems of deduc-
tion.

Formal logic is of course a central sub-discipline of philoso-
phy, where the logical relationship of assumptions to conclusions
reached from them is important. Philosophers investigate the
consequences of definitions and assumptions and evaluate these
definitions and assumptions on the basis of their consequences.
It is also important in mathematics and computer science. In
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PREFACE vii

mathematics, formal languages are used to describe not “every-
day” states of affairs, but mathematical states of affairs. Mathe-
maticians are also interested in the consequences of definitions
and assumptions, and for them it is equally important to estab-
lish these consequences (which they call “theorems”) using com-
pletely precise and rigorous methods. Formal logic provides such
methods. In computer science, formal logic is applied to describe
the state and behaviours of computational systems, e.g., circuits,
programs, databases, etc. Methods of formal logic can likewise
be used to establish consequences of such descriptions, such as
whether a circuit is errorfree, whether a program does what it’s
intended to do, whether a database is consistent or if something
is true of the data in it.

The book is divided into nine parts. Part I introduces the
topic and notions of logic in an informal way, without introduc-
ing a formal language yet. Parts II to IV concern truth-functional
languages. In it, sentences are formed from basic sentences using
a number of connectives (‘or’, ‘and’, ‘not’, ‘if ...then’) which just
combine sentences into more complicated ones. We discuss log-
ical notions such as entailment in two ways: semantically, using
the method of truth tables (in part III) and proof-theoretically, us-
ing a system of formal derivations (in part IV). Parts V to VII deal
with a more complicated language, that of first-order logic. It in-
cludes, in addition to the connectives of truth-functional logic,
also names, predicates, identity, and the so-called quantifiers.
These additional elements of the language make it much more
expressive than the truth-functional language, and we’ll spend
a fair amount of time investigating just how much one can ex-
press in it. Again, logical notions for the language of first-order
logic are defined semantically, using interpretations, and proof-
theoretically, using a more complex version of the formal deriva-
tion system introduced in part IV. Part VIII discusses the exten-
sion of TFL by non-truth-functional operators for possibility and
necessity: modal logic. Part IX covers two advanced topics: that
of conjunctive and disjunctive normal forms and the functional
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completeness of the truth-functional connectives, and the sound-
ness of natural deduction for TFL.

In the appendices you’ll find a discussion of alternative no-
tations for the languages we discuss in this text, of alternative
derivation systems, and a quick reference listing most of the im-
portant rules and definitions. The central terms are listed in a
glossary at the very end.

Credits. This book is based on a text originally written by P. D.
Magnus in the version revised and expanded by Tim Button. It
also includes some material (mainly exercises) by J. Robert Loftis.
The material in part VIII is based on notes by Robert Trueman
(but rewritten to use Fitch’s original natural deduction rules for
modal logic), and the material in chapters 45, 46 and 48 on two
chapters from Tim Button’s open text Metatheory. Aaron Thomas-
Bolduc and Richard Zach have combined elements of these texts
into the present version, changed some of the terminology and
examples, rewritten some sections, and added material of their
own. In particular, Richard Zach rewrote chapters 1 and 2, and
added chapters 7, 18, 29, 35 and 47. As of the Fall 2019 edition,
the part on FOL uses the syntax more common in advanced texts
(such as those based on the Open Logic Project) where arguments
to predicate symbols are enclosed in parentheses (i.e., ‘R(a,b)’
instead of ‘Rab’). This version of forallx also uses the stan-
dard definition of syntax for FOL which allows vacuous quantifi-
cation, and Gentzen’s original introduction and elimination rules
for natural deduction (i.e., double negation elimination and ex-
cluded middle rules are derived rules, and indirect proof is the
only classical rule). The resulting text is licensed under a Cre-
ative Commons Attribution 4.0 license. There are several other
“remixes” of forallx, including translations of this version.

Notes for instructors. The material in this book is suitable for
a semester-long introduction to formal logic. I cover parts I to VII
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plus chapters 45 to 47 in 12 weeks, although I leave out partial
truth tables and derived inference rules.

The most recent version of this book is available in PDF
at forallx.openlogicproject.org, but changes frequently. The CC
BY license gives you the right to download and distribute the
book yourself. In order to ensure that all your students have the
same version of the book throughout the term you’re using it,
you should do so: upload the PDF you decide to use to your
LMS rather than merely give your students the link. The book is
also available in an HTML version. This version has been pre-
pared with special attention to accessibility issues and should be
more suitable for users who rely on screen readers, e.g., students
with low vision or complete loss of vision. You can download a
SCORM bundle including the HTML and PDF versions for up-
load to your LMS. You are also free to have the PDFs printed
by your bookstore, but some bookstores may be able to purchase
and stock the softcover books available on Amazon.

Note that solutions to many exercises in the book are available
at the above site as well (to everyone, including your students).
The solutions are not (yet) part of the HTML version or the
SCORM bundle.

The syntax and proof systems (except those for modal logic)
are supported by Graham Leach-Krouse’s free, online logic teach-
ing software application Carnap (carnap.io). This allows for sub-
mission and automated marking of exercises such as symboliza-
tion, truth tables, and natural deduction proofs. Instructors on
carnap.io will be able to find samples of additional exercises they
may wish to adapt or assign as-is.
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CHAPTER 1

Arguments

Logic has many uses, as mentioned in the preface. What we will
be focusing on here is its use in evaluating arguments; sorting the
good from the bad.

In everyday language, we sometimes use the word ‘argument’
to talk about belligerent shouting matches. If you and a friend
have an argument in this sense, things are not going well between
the two of you. Logic is not concerned with such teeth-gnashing
and hairpulling. They are not arguments, in our sense; they are
just disagreements.

An argument, as we will understand it, is something more
like this:

Either the butler or the gardener did it.
The butler didn’t do it.
. The gardener did it.

We have here a series of sentences. The three dots on the third
line of the argument are read ‘therefore.” They indicate that the
final sentence expresses the conclusion of the argument. The two
sentences before that are the premises of the argument. If you be-
lieve the premises, and you think the conclusion follows from the
premises—that the argument, as we will say, is valid—then this
(perhaps) provides you with a reason to believe the conclusion.
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This is the sort of thing that logicians are interested in. We
will say that an argument is any collection of premises, together
with a conclusion.

This Part discusses some basic logical notions that apply to
arguments in a natural language like English. It is important to
begin with a clear understanding of what arguments are and of
what it means for an argument to be valid. Later we will represent
English-language arguments in a formal language.

In the example just given, we used individual sentences to
express both of the argument’s premises, and we used a third
sentence to express the argument’s conclusion. Many arguments
are expressed in this way, but a single sentence can contain a
complete argument. Consider:

The butler has an alibi; so they cannot have done it.

This argument has one premise followed by a conclusion.

Many arguments start with premises, and end with a conclu-
sion, but not all of them. The argument with which this section
began might equally have been presented with the conclusion at
the beginning, like so:

The gardener did it. After all, it was either the butler
or the gardener. And the butler didn’t do it.

Equally, it might have been presented with the conclusion in the

middle:

The butler didn’t do it. Accordingly, it was the gar-
dener, given that it was either the gardener or the
butler.

When approaching an argument, we want to know whether or not
the conclusion follows from the premises. So the first thing to do
is to separate out the conclusion from the premises. As a guide,
these words are often used to indicate an argument’s conclusion:

so, therefore, hence, thus, accordingly, consequently
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For this reason, they are sometimes called CONCLUSION INDICA-
TOR WORDS.

By contrast, these expressions are PREMISE INDICATOR
WORDS, as they often indicate that we are dealing with a premise,
rather than a conclusion:

since, because, given that

But in analysing an argument, there is no substitute for a good
nose.

1.1 Sentences

To be perfectly general, we can define an ARGUMENT as a series
of sentences. The sentences at the beginning of the series are
premises. The final sentence in the series is the conclusion. If
the premises are true and the argument is a good one, then you
have a reason to accept the conclusion.

In logic, we are only interested in sentences that can figure
as a premise or conclusion of an argument, i.e., sentences that
can be true or false. So we will restrict ourselves to sentences of
this sort, and define a SENTENCE as a sentence that can be true
or false.

You should not confuse the idea of a sentence that can be
true or false with the difference between fact and opinion. Often,
sentences in logic will express things that would count as facts—
such as ‘Rudolf Carnap was born in Ronsdorf’ or ‘Simone de
Beauvoir liked taking walks’. They can also express things that
you might think of as matters of opinion—such as, ‘Rhubarb is
tasty’. In other words, a sentence is not disqualified from being
part of an argument because we don’t know if it is true or false,
or because its truth or falsity is a matter of opinion. If it is the
kind of sentence that could be true or false it can play the role of
premise or conclusion.
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Also, there are things that would count as ‘sentences’ in a
linguistics or grammar course that we will not count as sentences
in logic.

Questions. In a grammar class, ‘Are you sleepy yet?” would
count as an interrogative sentence. Although you might be sleepy
or you might be alert, the question itself is neither true nor false.
For this reason, questions will not count as sentences in logic.
Suppose you answer the question: ‘T am not sleepy.” This is either
true or false, and so it is a sentence in the logical sense. Generally,
questions will not count as sentences, but answers will.

‘What is this course about?’ is not a sentence (in our sense).
‘No one knows what this course is about’ is a sentence.

Imperatives. Commands are often phrased as imperatives like
‘Wake up!’, ‘Sit up straight’, and so on. In a grammar class, these
would count as imperative sentences. Although it might be good
for you to sit up straight or it might not, the command is neither
true nor false. Note, however, that commands are not always
phrased as imperatives. “You will respect my authority’ is either
true or false—either you will or you will not—and so it counts as
a sentence in the logical sense.

Exclamations. ‘Ouch! is sometimes called an exclamatory
sentence, but it is neither true nor false. We will treat ‘Ouch,
I hurt my toe!” as meaning the same thing as ‘I hurt my toe.” The
‘ouch’ does not add anything that could be true or false.

Practice exercises

At the end of some chapters, there are exercises that review and
explore the material covered in the chapter. There is no substitute
for actually working through some problems, because learning
logic is more about developing a way of thinking than it is about
memorizing facts.
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So here’s the first exercise. Highlight the phrase which ex-
presses the conclusion of each of these arguments:

1.
2.

It is sunny. So I should take my sunglasses.

It must have been sunny. I did wear my sunglasses, after
all.

No one but you has had their hands in the cookiejar. And
the scene of the crime is littered with cookie-crumbs. You’re
the culprit!

Miss Scarlett and Professor Plum were in the study at the
time of the murder. Reverend Green had the candlestick
in the ballroom, and we know that there is no blood on his
hands. Hence Colonel Mustard did it in the kitchen with
the lead pipe. Recall, after all, that the gun had not been
fired.



CHAPTER 2

The scope of
logic

2.1 Consequence and validity

In chapter 1, we talked about arguments, i.e., collections of sen-
tences (the premises), followed by a single sentence (the con-
clusion). We said that some words, such as ‘therefore’, indicate
which sentence is supposed to be the conclusion. ‘Therefore’, of
course, suggests that there is a connection between the premises
and the conclusion, namely that the conclusion follows from, or is
a consequence of, the premises.

This notion of consequence is one of the primary things logic
is concerned with. One might even say that logic is the science of
what follows from what. Logic develops theories and tools that
tell us when a sentence follows from some others.

What about the main argument discussed in chapter 1?

Either the butler or the gardener did it.
The butler didn’t do it.
. The gardener did it.

We don’t have any context for what the sentences in this argu-
ment refer to. Perhaps you suspect that “did it” here means “was
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the perpetrator” of some unspecified crime. You might imagine
that the argument occurs in a mystery novel or TV show, per-
haps spoken by a detective working through the evidence. But
even without having any of this information, you probably agree
that the argument is a good one in the sense that whatever the
premises refer to, if they are both true, the conclusion cannot but
be true as well. If the first premise is true, i.e., it’s true that “the
butler did it or the gardener did it”, then at least one of them
“did it”, whatever that means. And if the second premise is true,
then the butler did not “do it.” That leaves only one option: “the
gardener did it” must be true. Here, the conclusion follows from
the premises. We call arguments that have this property vALID.
By way of contrast, consider the following argument:

If the driver did it, the maid didn’t do it.
The maid didn’t do it.
.. The driver did it.

We still have no idea what is being talked about here. But, again,
you probably agree that this argument is different from the pre-
vious one in an important respect. If the premises are true, it is
not guaranteed that the conclusion is also true. The premises of
this argument do not rule out, by themselves, that someone other
than the maid or the driver “did it.” So there is a case where both
premises are true, and yet the driver didn’t do it, i.e., the conclu-
sion is not true. In this second argument, the conclusion does not
follow from the premises. If, like in this argument, the conclusion
does not follow from the premises, we say it is INVALID.

2.2 Cases and types of validity

How did we determine that the second argument is invalid? We
pointed to a case in which the premises are true and in which the
conclusion is not. This was the scenario where neither the driver
nor the maid did it, but some third person did. Let’s call such a
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case a COUNTEREXAMPLE to the argument. If there is a counterex-
ample to an argument, the conclusion cannot be a consequence
of the premises. For the conclusion to be a consequence of the
premises, the truth of the premises must guarantee the truth of
the conclusion. If there is a counterexample, the truth of the
premises does not guarantee the truth of the conclusion.

As logicians, we want to be able to determine when the
conclusion of an argument follows from the premises. And
the conclusion is a consequence of the premises if there is no
counterexample—no case where the premises are all true but the
conclusion is not. This motivates a definition:

A sentence A is a CONSEQUENCE of sentences By, ..., B, if
and only if there is no case where By, ..., B, are all true
and A4 is not true. (We then also say that 4 FOLLOWS FROM
By, ..., B, or that By, ..., B, ENTAIL A.)

This “definition” is incomplete: it does not tell us what a
“case” is or what it means to be “true in a case.” So far we’ve
only seen an example: a hypothetical scenario involving three
people. Of the three people in the scenario—a driver, a maid,
and some third person—the driver and maid didn’t do it, but the
third person did. In this scenario, as described, the driver didn’t
do it, and so it is a case in which the sentence “the driver did it”
is not true. The premises of our second argument are true, but
the conclusion is not true: the scenario is a counterexample.

We said that arguments where the conclusion is a conse-
quence of the premises are called valid, and those where the con-
clusion isn’t a consequence of the premises are invalid. Since we
now have at least a first stab at a definition of “consequence”,
we’ll record this:
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> An argument is VALID if and only if the conclusion is a
consequence of the premises.

> An argument is INVALID if and only if it is not valid, i.e.,
it has a counterexample.

Logicians are in the business of making the notion of “case”
more precise, and investigating which arguments are valid when
“case” is made precise in one way or another. If we take “case” to
mean “hypothetical scenario” like the counterexample to the sec-
ond argument, it’s clear that the first argument counts as valid. If
we imagine a scenario in which either the butler or the gardener
did it, and also the butler didn’t do it, we are automatically imag-
ining a scenario in which the gardener did it. So any hypothetical
scenario in which the premises of our first argument are true au-
tomatically makes the conclusion of our first argument true. This
makes the first argument valid.

Making “case” more specific by interpreting it as “hypothet-
ical scenario” is an advance. But it is not the end of the story.
The first problem is that we don’t know what to count as a hy-
pothetical scenario. Are they limited by the laws of physics? By
what is conceivable, in a very general sense? What answers we
give to these questions determine which arguments we count as
valid.

Suppose the answer to the first question is “yes.” Consider
the following argument:

The spaceship Rocinante took six hours to reach Jupiter
from Tycho space station.

. The distance between Tycho space station and Jupiter is
less than 14 billion kilometers.

A counterexample to this argument would be a scenario in which
the Rocinante makes a trip of over 14 billion kilometers in 6 hours,
exceeding the speed of light. Since such a scenario is incompat-
ible with the laws of physics, there is no such scenario if hypo-
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thetical scenarios have to conform to the laws of physics. If hypo-
thetical scenarios are not limited by the laws of physics, however,
there is a counterexample: a scenario where the Rocinante travels
faster than the speed of light.

Suppose the answer to the second question is “yes”, and con-
sider another argument:

Priya is an ophthalmologist.
.. Priya is an eye doctor.

If we’re allowing only conceivable scenarios, this is also a valid
argument. If you imagine Priya being an ophthalmologist, you
thereby imagine Priya being an eye doctor. That’s just what “oph-
thalmologist” and “eye doctor” mean. A scenario where Priya is
an ophthalmologist but not an eye doctor is ruled out by the con-
ceptual connection between these words.

Depending on what kinds of cases we consider as potential
counterexamples we arrive at different notions of consequence
and validity. Validity is characterized by the absence of coun-
terexamples. But what counts as a counterexample may be dif-
ferent for different notions. For instance, we might exclude coun-
terexamples that violate the laws of nature, or counterexamples
that violate conceptual connections between words like “eye doc-
tor” and “ophthalmologist”. So, we might call an argument
NOMOLOGICALLY VALID if there are no counterexamples that re-
spect the laws of nature, and an argument CONCEPTUALLY VALID
if there are no counterexamples that respect conceptual connec-
tions between words. For both of these notions of validity, aspects
of the world (e.g., what the laws of nature are) and aspects of the
meaning of the sentences in the argument (e.g., that “ophthal-
mologist” just means a kind of eye doctor) figure into whether an
argument counts as valid.
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2.3 Formal validity

One distinguishing feature of logical consequence, however, is
that it should not depend on the content of the premises and
conclusion, but only on their logical form. In other words, as
logicians we want to develop a theory that captures yet another
way in which arguments can be valid. For instance, both

Priya is either an ophthalmologist or a dentist.
Priya isn’t a dentist.
. Priya is an eye doctor.

and

Priya is either an ophthalmologist or a dentist.
Priya isn’t a dentist.
. Priya is an ophthalmologist.

are valid arguments. But while the validity of the first depends on
the content (i.e., the meaning of “ophthalmologist” and “eye doc-
tor”), the second does not. The second argument is FORMALLY
VALID. We can describe the “form” of this argument as a pattern,
something like this:

A is eitheran X ora Y.
Aisn’taY.
s Aisan X.

Here, 4, X, and Y are placeholders for appropriate expressions
that, when substituted for 4, X, and Y, turn the pattern into an
argument consisting of sentences. For instance,

Mei is either a mathematician or a botanist.
Mei isn’t a botanist.
.. Mei is a mathematician.

is an argument of the same form, but the first argument above is
not: we would have to replace Y by different expressions (once
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by “ophthalmologist” and once by “eye doctor”) to obtain it from
the pattern.

Moreover, the first argument is not formally valid. /ts form is
this:

A is eitheran X ora Y.
Aisn’taY.
s Aisa Z.

In this pattern we can replace X by “ophthalmologist” and Z by
“eye doctor” to obtain the original argument. But here is another
argument of the same form:

Mei is either a mathematician or a botanist.
Mei isn’t a botanist.
.. Mei is an acrobat.

This argument is clearly not valid, since we can imagine a math-
ematician named Mei who is not an acrobat.

Our strategy as logicians will be to come up with a notion
of “case” on which an argument turns out to be valid only if it
is formally valid. Clearly such a notion of “case” will have to
violate not just some laws of nature but some laws of English.
Since the first argument is invalid in this sense, we must allow as
counterexample a case where Priya is an ophthalmologist but not
an eye doctor. That case is not a conceivable situation: it is ruled
out by the meanings of “ophthalmologist” and “eye doctor.”

When we consider cases of various kinds in order to evaluate
the validity of an argument, we will make one important assump-
tion. We assume that every case makes every sentence under
consideration true or not true. That means first of all that any
imagined scenario which leaves it undetermined if a sentence in
our argument is true will not be considered as a potential coun-
terexample. For instance, a scenario where Priya is a dentist but
not an ophthalmologist will count as a case to be considered in
the first few arguments in this section, but not as a case to be
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considered in the last two: it doesn’t tell us if Mei is a mathemati-
cian, a botanist, or an acrobat. If a case doesn’t make a sentence
true, we say it makes it FALSE. We’ll thus assume that cases make
sentences true or false but never both."

2.4 Sound arguments

Before we go on and execute this strategy, a few clarifications.
We have defined arguments as collections of sentences in which
one (the conclusion) is supposed to follow from the others (the
premises). Arguments in this sense are used all the time in every-
day and scientific discourse. When they are, arguments are given
to support or even prove their conclusions. Now, if an argument
is valid, it will support its conclusion, but only if its premises
are all true. Validity rules out the possibility that the premises
are true and the conclusion is not true at the same time. It does
not, by itself, rule out the possibility that the conclusion is not
true, period. In other words, it is perfectly possibly for a valid
argument to have a conclusion that isn’t true!
Consider this example:

Oranges are either fruit or musical instruments.
Oranges are not fruit.
. Oranges are musical instruments.

The conclusion of this argument is ridiculous. Nevertheless, it
follows from the premises. If both premises are true, then the
conclusion just has to be true. So the argument is valid.

!The assumption that sentences are true or false and not both is called
“bivalence.” Even if this assumption seems common-sensical to you, it is con-
troversial among philosophers of logic. First of all, there are logicians who want
to consider cases where sentences are neither true nor false, but have some kind
of intermediate level of truth. More controversially, some philosophers think
we should allow for the possibility of sentences to be both true and false at the
same time. There are systems of logic in which sentences can be neither true
nor false, or both, but we will not discuss them in this book.
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Conversely, having true premises and a true conclusion is not
enough to make an argument valid. Consider this example:

London is in England.
Beijing is in China.
.. Paris is in France.

The premises and conclusion of this argument are, as a matter of
fact, all true, but the argument is invalid. If Paris were to declare
independence from the rest of France, then the conclusion would
no longer be true, even though both of the premises would remain
true. Thus, there is a case where the premises of this argument
are true without the conclusion being true. So the argument is
invalid.

The important thing to remember is that validity is not about
the actual truth or falsity of the sentences in the argument. It is
about whether it is possible for all the premises to be true and the
conclusion to be not true at the same time (in some hypothetical
case). What is in fact the case has no special role to play; and what
the facts are does not determine whether an argument is valid or
not.” Nothing about the way things are can by itself determine if
an argument is valid. It is often said that logic doesn’t care about
feelings. Actually, it doesn’t care about facts, either.

When we use an argument to prove that its conclusion is ¢rue,
then, we need two things. First, we need the argument to be valid;
i.e., we need the conclusion to follow from the premises. But we
also need the premises to be true. We will say that an argument
is sounD if and only if it is both valid and all of its premises are
true.

The flip side of this is that when you want to rebut an argu-
ment, you have two options: you can show that (one or more of)
the premises are not true, or you can show that the argument is
not valid. Logic, however, will only help you with the latter!

2Well, there is one case where it does: if the premises are in fact true and
the conclusion is in fact not true, then we live in a counterexample; so the
argument is invalid.
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2.5 Inductive arguments

Many good arguments are invalid. Consider this one:

Every winter so far, it has snowed in Calgary.
. It will snow in Calgary this coming winter.

This argument generalises from observations about many (past)
cases to a conclusion about all (future) cases. Such arguments
are called INDUCTIVE arguments. Nevertheless, the argument is
invalid. Even if it has snowed in Calgary every winter thus far, it
remains possible that Calgary will stay dry all through the coming
winter. In fact, even if it will henceforth snow every winter in
Calgary, we could still imagine a case in which this year is the first
year it doesn’t snow all winter. And that hypothetical scenario
is a case where the premises of the argument are true but the
conclusion is not, making the argument invalid.

The point of all this is that inductive arguments—even good
inductive arguments—are not (deductively) valid. They are not
watertight. Unlikely though it might be, it is possible for their con-
clusion to be false, even when all of their premises are true. In
this book, we will set aside (entirely) the question of what makes
for a good inductive argument. Our interest is simply in sorting
the (deductively) valid arguments from the invalid ones.

So: we are interested in whether or not a conclusion follows
Jrom some premises. Don’t, though, say that the premises infer
the conclusion. Entailment is a relation between premises and
conclusions; inference is something we do. So if you want to
mention inference when the conclusion follows from the premises,
you could say that one may infer the conclusion from the premises.

Practice exercises

A. Which of the following arguments are valid? Which are in-
valid?

1. Socrates is a man.
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All men are carrots.
". Socrates is a carrot.
2. Either Abe Lincoln was born in Illinois or he was once
president.
Abe Lincoln was never president.
.. Abe Lincoln was born in Illinois.
3. If I pull the trigger, Abe Lincoln will die.
I do not pull the trigger.
". Abe Lincoln will not die.
4. Abe Lincoln was either from France or from Luxem-
bourg.
Abe Lincoln was not from Luxembourg.
". Abe Lincoln was from France.
5. If the world ends today, then I will not need to get up
tomorrow morning.
I will need to get up tomorrow morning.
". The world will not end today.
6. Joe is now 19 years old.
Joe is now 87 years old.
.. Bob is now 20 years old.

B. Could there be:

1. A valid argument that has one false premise and one true
premise?

2. A valid argument that has only false premises?

3. A valid argument with only false premises and a false con-
clusion?

4. Aninvalid argument that can be made valid by the addition
of a new premise?

5. A valid argument that can be made invalid by the addition
of a new premise?

In each case: if so, give an example; if not, explain why not.



CHAPTER 3

Other logical

notions

In chapter 2, we introduced the idea of consequence, i.e., of va-
lidity of arguments. This is one of the most important ideas in
logic. In this section, we will introduce some similarly important
ideas. They all rely, as did validity, on the idea that sentences
are true (or not) in cases. For the rest of this section, we’ll take
cases in the sense of conceivable scenario, i.e., in the sense in
which we used them to define conceptual validity. The points we
made about different kinds of validity can be made about our
new notions along similar lines: if we use a different idea of what
counts as a “case” we will get different notions. And as logicians
we will, eventually, consider a more permissive definition of case
than we do here.

3.1 Joint possibility
Consider these two sentences:

B1. Jane’s only brother is shorter than her.
Be. Jane’s only brother is taller than her.

18
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Logic alone cannot tell us which, if either, of these sentences is
true. Yet we can say that if the first sentence (B1) is true, then
the second sentence (B2) must be false. Similarly, if B2 is true,
then B1 must be false. There is no possible scenario where both
sentences are true together. These sentences are incompatible
with each other, they cannot all be true at the same time. This
motivates the following definition:

Sentences are JOINTLY POSSIBLE if and only if there is a
case where they are all true together.

B1 and B2 are jointly impossible, while, say, the following two
sentences are jointly possible:

B1. Jane’s only brother is shorter than her.
B2. Jane’s only brother is younger than her.

We can ask about the joint possibility of any number of sen-
tences. For example, consider the following four sentences:

G1. There are at least four giraffes at the wild animal park.

G2. There are exactly seven gorillas at the wild animal park.

G3. There are not more than two Martians at the wild animal
park.

G4. Every giraffe at the wild animal park is a Martian.

G1 and G4 together entail that there are at least four Martian
giraffes at the park. This conflicts with G3, which implies that
there are no more than two Martian giraffes there. So the sen-
tences G1-G4 are jointly impossible. They cannot all be true
together. (Note that the sentences G1, G3 and G4 are jointly im-
possible. But if sentences are already jointly impossible, adding
an extra sentence to the mix cannot make them jointly possible!)

There is one thing worth pointing out: You might think that
an argument only “makes sense” if its premises are jointly pos-
sible. But neither our definition of what an argument is, nor of
when it is valid, requires this. In fact, according to our definition,
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any argument with jointly impossible premises is automatically
valid! (Exercise: convince yourself that this is true.)

3.2 Necessary truths, necessary falsehoods,
and contingency

In assessing arguments for validity, we care about what would be
true if the premises were true, but some sentences just must be
true. Consider these sentences:

1. It is raining.
2. Either it is raining here, or it is not.
3. It is both raining here and not raining here.

In order to know if sentence 1 is true, you would need to look
outside or check the weather channel. It might be true; it might
be false. A sentence which is capable of being true and capa-
ble of being false (in different circumstances, of course) is called
CONTINGENT.

Sentence 2 is different. You do not need to look outside to
know that it is true. Regardless of what the weather is like, it is
either raining or it is not. That is a NECESSARY TRUTH.

Equally, you do not need to check the weather to determine
whether or not sentence 3 is true. It must be false, simply as a
matter of logic. It might be raining here and not raining across
town; it might be raining now but stop raining even as you finish
this sentence; but it is impossible for it to be both raining and
not raining in the same place and at the same time. So, whatever
the world is like, it is not both raining here and not raining here.
It is a NECESSARY FALSEHOOD.

Something might always be true and still be contingent. For
instance, if there never were a time when the universe contained
fewer than seven things, then the sentence ‘At least seven things
exist’ would always be true. Yet the sentence is contingent: the
world could have been much, much smaller than it is, and then
the sentence would have been false.
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3.3 Necessary equivalence

We can also ask about the logical relations between two sentences.
For example:

John went to the store after he washed the dishes.
John washed the dishes before he went to the store.

These two sentences are both contingent, since John might not
have gone to the store or washed dishes at all. Yet they must have
the same truth-value. If either of the sentences is true, then they
both are; if either of the sentences is false, then they both are.
When two sentences have the same truth value in every case, we
say that they are NECESSARILY EQUIVALENT.

Summary of logical notions

> An argument is VALID if there is no case where the
premises are all true and the conclusion is not; it is IN-
VALID otherwise.

> A NECESSARY TRUTH is a sentence that is true in every
case.

> A NECESSARY FALSEHOOD is a sentence that is false in
every case.

> A CONTINGENT SENTENCE is neither a necessary truth
nor a necessary falsehood; a sentence that is true in
some case and false in some other case.

> Two sentences are NECESSARILY EQUIVALENT if, in every
case, they are both true or both false.

> A collection of sentences is JOINTLY POSSIBLE if there
is a case where they are all true together; it is JOINTLY
IMPOSSIBLE otherwise.
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Practice exercises

A. For each of the following: Is it a necessary truth, a necessary
falsehood, or contingent?

EAl o

6.

Caesar crossed the Rubicon.

Someone once crossed the Rubicon.

No one has ever crossed the Rubicon.

If Caesar crossed the Rubicon, then someone has.

Even though Caesar crossed the Rubicon, no one has ever
crossed the Rubicon.

If anyone has ever crossed the Rubicon, it was Caesar.

B. For each of the following: Is it a necessary truth, a necessary
falsehood, or contingent?

1.

Elephants dissolve in water.

2. Wood is a light, durable substance useful for building

4.
5.

things.

If wood were a good building material, it would be useful
for building things.

I live in a three-story building that is two stories tall.

If gerbils were mammals, they would nurse their young.

C. Which of the following pairs of sentences are necessarily equiv-

alent?

Elephants dissolve in water.

If you put an elephant in water, it will disintegrate.
All mammals dissolve in water.

If you put an elephant in water, it will disintegrate.
George Bush was the 43rd president.

Barack Obama is the 44th president.

Barack Obama is the 44th president.

Barack Obama was president immediately after the 43rd
president.

Elephants dissolve in water.

All mammals dissolve in water.
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D. Which of the following pairs of sentences are necessarily equiv-
alent?

1. Thelonious Monk played piano.
John Coltrane played tenor sax.
2. Thelonious Monk played gigs with John Coltrane.
John Coltrane played gigs with Thelonious Monk.
3. All professional piano players have big hands.
Piano player Bud Powell had big hands.
4. Bud Powell suffered from severe mental illness.
All piano players suffer from severe mental illness.
5. John Coltrane was deeply religious.
John Coltrane viewed music as an expression of spirituality.

E. Consider the following sentences:

G1. There are at least four giraffes at the wild animal park.

G2. There are exactly seven gorillas at the wild animal park.

G3. There are not more than two Martians at the wild animal
park.

G4. Every giraffe at the wild animal park is a Martian.

Now consider each of the following collections of sentences.
Which are jointly possible? Which are jointly impossible?

1. Sentences G2, G3, and G4
2. Sentences G1, G3, and G4
3. Sentences G1, G2, and G4
4. Sentences G1, G2, and G3

F. Consider the following sentences.

Mai. All people are mortal.
Mz. Socrates is a person.
Mg3. Socrates will never die.
Mjy. Socrates is mortal.

Which combinations of sentences are jointly possible? Mark each
“possible” or “impossible.”
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Sentences M1, Mg, and M3
Sentences M2, M3, and M4
Sentences M2 and M3
Sentences M1 and My
Sentences M1, M2, M3, and M4

AN al o

G. Which of the following are possible? For each, if it is possible,
give an example. If it is not possible, explain why.

1. A valid argument that has one false premise and one true
premise

2. A valid argument that has a false conclusion

3. A valid argument, the conclusion of which is a necessary
falsehood

4. Aninvalid argument, the conclusion of which is a necessary
truth

5. A necessary truth that is contingent

6. Two necessarily equivalent sentences, both of which are
necessary truths

7. Two necessarily equivalent sentences, one of which is a nec-
essary truth and one of which is contingent

8. Two necessarily equivalent sentences that together are
jointly impossible

9. A jointly possible collection of sentences that contains a
necessary falsehood

10. A jointly impossible set of sentences that contains a neces-

sary truth

H. Which of the following are possible? For each, if it is possible,
give an example. If it is not possible, explain why.

1. A valid argument, whose premises are all necessary truths,
and whose conclusion is contingent

2. A valid argument with true premises and a false conclusion

3. A jointly possible collection of sentences that contains two
sentences that are not necessarily equivalent
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. A jointly possible collection of sentences, all of which are

contingent

. A false necessary truth
. A valid argument with false premises
. A necessarily equivalent pair of sentences that are not

jointly possible

. A necessary truth that is also a necessary falsehood
. A jointly possible collection of sentences that are all neces-

sary falsehoods
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functional

logic



CHAPTER 4

First steps to
symbolization

4.1 Validity in virtue of form

Consider this argument:

It is raining outside.
If it is raining outside, then Jenny is miserable.
.. Jenny is miserable.

and another argument:

Jenny is an anarcho-syndicalist.
If Jenny is an anarcho-syndicalist, then Dipan is an avid
reader of Tolstoy.

. Dipan is an avid reader of Tolstoy.

Both arguments are valid, and there is a straightforward sense in
which we can say that they share a common structure. We might
express the structure thus:

A
If A, then C
© C

27
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This looks like an excellent argument structure. Indeed, surely
any argument with this structure will be valid. And this is not
the only good argument structure. Consider an argument like:

Jenny is either happy or sad.
Jenny is not happy.
.. Jenny is sad.

Again, this is a valid argument. The structure here is something
like:

Aor B
not-A
B

A superb structure! Here is another example:

It’s not the case that Jim both studied hard and acted in
lots of plays.
Jim studied hard.

.. Jim did not act in lots of plays.

This valid argument has a structure which we might represent
thus:

not-(4 and B)
A
. not-B

These examples illustrate an important idea, which we might de-
scribe as validity in virtue of form. The validity of the arguments
just considered has nothing very much to do with the meanings
of English expressions like Jenny is miserable’, ‘Dipan is an avid
reader of Tolstoy’, or Jim acted in lots of plays’. If it has to do
with meanings at all, it is with the meanings of phrases like ‘and’,
‘or’, ‘not,” and ‘if ..., then ... .

In parts II to IV, we are going to develop a formal language
which allows us to symbolize many arguments in such a way as
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to show that they are valid in virtue of their form. This will be
the language of truth-functional logic, or TFL."

4.2 Validity for special reasons

In section 2.3, we first introduced the notion of formal validity,
and contrasted it with other kinds of validity related to what kinds
of counterexamples we consider. It bears repeating that there are
plenty of arguments that are valid, but not for reasons relating to
their form. Take an example:

Juanita is a vixen.
.. Juanita is a fox.

It is impossible for the premise to be true and the conclusion
false, since ‘vixen’ just means ‘female fox’. So the argument is
(conceptually) valid. The validity is not explained by the form of
the argument. To see this, we can give an invalid argument with
the same form, e.g.:

Juanita is a vixen.
.. Juanita is a cathedral.

Equally, consider the argument:

The sculpture is green all over.
.. The sculpture is not red all over.

Again, it seems there can be no case where the premise is true
and the conclusion false, for nothing can be both green all over
and red all over. So the argument is valid, but here is an invalid
argument with the same form:

The sculpture is green all over.
.. The sculpture is not shiny all over.

!Truth-functional logic is also often called (classical) “propositional” or
“sentential” logic.



CHAPTER 4. FIRST STEPS TO SYMBOLIZATION 30

This argument is invalid, since it is possible to be green all over
and shiny all over. (One might paint the sculpture with an elegant
shiny green varnish.) Plausibly, the validity of the first argument
is keyed to the way that colours (or colour-words) interact, but,
whether or not that is right, it is not simply the form of the argu-
ment alone that makes it valid.

The important moral can be stated as follows. At best, TFL
will help us to understand arguments that are valid due to their form.

4.3 Atomic sentences

We started isolating the form of an argument, in section 4.1, by
replacing subsentences of sentences with individual letters. Thus
in the first example of this section, ‘it is raining outside’ is a
subsentence of ‘If it is raining outside, then Jenny is miserable’,
and we replaced this subsentence with ‘4’.

The artificial language of TFL pursues this idea absolutely
ruthlessly. We start with some sentence letters. These will be the
basic building blocks out of which more complex sentences are
built (they are the “atomic” sentences of TFL). We will use sin-
gle uppercase letters as sentence letters of TFL. There are only
twenty-six letters of the alphabet, but there is no limit to the num-
ber of sentence letters that we might want to consider. By adding
subscripts to letters, we obtain new sentence letters. So, here are
five different sentence letters of TFL:

A,P,Py,Py, A3

We will use sentence letters to represent, or symbolize, certain
English sentences. To do this, we provide a SYMBOLIZATION KEY,
such as the following:

A: It is raining outside
C: Jenny is miserable

In doing this, we are not fixing this symbolization once and for
all. We are just saying that, for the time being, we will think of
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the sentence letter of TFL, ‘4’, as symbolizing the English sen-
tence ‘It is raining outside’, and the sentence letter of TFL, ‘C’,
as symbolizing the English sentence ‘Jenny is miserable’. Later,
when we are dealing with different sentences or different argu-
ments, we can provide a new symbolization key; as it might be:

A: Jenny is an anarcho-syndicalist
C: Dipan is an avid reader of Tolstoy

It is important to understand that whatever structure an English
sentence might have is lost when it is symbolized by a sentence
letter of TFL. From the point of view of TFL, a sentence letter is
just a letter. It can be used to build more complex sentences, but
it cannot be taken apart.



CHAPTER 5

Connectives

In the previous chapter, we considered symbolizing fairly basic
English sentences with sentence letters of TFL. This leaves us
wanting to deal with the English expressions ‘and’, ‘or’, ‘not’,
and so forth. These are connectives—they can be used to form new
sentences out of old ones. In TFL, we will make use of logical
connectives to build complex sentences from atomic components.
There are five logical connectives in TFL. This table summarizes

them, and they are explained throughout this section.

symbol what it is called rough meaning

- negation ‘It is not the case that...’
A conjunction ‘Both...and ...’

v disjunction ‘Either...or ...

— conditional ‘If ... then ..~

© biconditional ‘...if and only if ...

These are not the only connectives of English of interest. Oth-
ers are, e.g., ‘unless’, ‘neither ... nor...’, and ‘because’. We will
see that the first two can be expressed by the connectives we will
discuss, while the last cannot. ‘Because’, in contrast to the others,
is not truth functional.

32
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5.1 Negation

Consider how we might symbolize these sentences:

1. Mary is in Barcelona.
2. It is not the case that Mary is in Barcelona.
3. Mary is not in Barcelona.

In order to symbolize sentence 1, we will need a sentence letter.
We might offer this symbolization key:

B: Mary is in Barcelona.

Since sentence 2 is obviously related to sentence 1, we will not
want to symbolize it with a completely different sentence letter.
Roughly, sentence 2 means something like ‘It is not the case
that B’. In order to symbolize this, we need a symbol for nega-
tion. We will use ‘=’. Now we can symbolize sentence 2 with ‘-B’.

Sentence 3 also contains the word ‘not’, and it is obviously
equivalent to sentence 2. As such, we can also symbolize it
with ‘=B’

A sentence can be symbolized as —d if it can be para-
phrased in English as ‘It is not the case that...’.

It will help to offer a few more examples:

4. The widget can be replaced.
5. The widget is irreplaceable.
6. The widget is not irreplaceable.

Let us use the following representation key:
R: The widget is replaceable

Sentence 4 can now be symbolized by ‘R’. Moving on to sen-
tence 5: saying the widget is irreplaceable means that it is not
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the case that the widget is replaceable. So even though sen-
tence 5 does not contain the word ‘not’, we will symbolize it as
follows: ‘-R’.

Sentence 6 can be paraphrased as ‘It is not the case that the
widget is irreplaceable.” Which can again be paraphrased as ‘It
is not the case that it is not the case that the widget is replace-
able’. So we might symbolize this English sentence with the TFL
sentence ‘——R’.

But some care is needed when handling negations. Consider:

7. Jane is happy.
8. Jane is unhappy.

If we let the TFL-sentence ‘H’ symbolize ‘Jane is happy’, then we
can symbolize sentence 7 as ‘H’. However, it would be a mistake
to symbolize sentence 8 with ‘-/’. If Jane is unhappy, then she is
not happy; but sentence 8 does not mean the same thing as ‘It is
not the case that Jane is happy’. Jane might be neither happy nor
unhappy; she might be in a state of blank indifference. In order to
symbolize sentence 8, then, we would need a new sentence letter
of TFL.

5.2 Conjunction

Consider these sentences:

9. Adam is athletic.
10. Barbara is athletic.
11. Adam is athletic, and also Barbara is athletic.

We will need separate sentence letters of TFL to symbolize sen-
tences g and 10; perhaps

A: Adam is athletic.
B: Barbara is athletic.

Sentence g can now be symbolized as ‘4A’, and sentence 10 can
be symbolized as ‘B’. Sentence 11 roughly says ‘A and B’. We
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need another symbol, to deal with ‘and’. We will use ‘A’. Thus
we will symbolize it as ‘(4 A B)’. This connective is called cON-
JUNCTION. We also say that ‘4’ and ‘B’ are the two CONJUNCTS
of the conjunction ‘(4 A B)’.

Notice that we make no attempt to symbolize the word ‘also’
in sentence 11. Words like ‘both’ and ‘also’ function to draw our
attention to the fact that two things are being conjoined. Maybe
they affect the emphasis of a sentence, but we will not (and can-
not) symbolize such things in TFL.

Some more examples will bring out this point:

12. Barbara is athletic and energetic.

13. Barbara and Adam are both athletic.

14. Although Barbara is energetic, she is not athletic.

15. Adam is athletic, but Barbara is more athletic than him.

Sentence 12 is obviously a conjunction. The sentence says two
things (about Barbara). In English, it is permissible to refer to
Barbara only once. It might be tempting to think that we need to
symbolize sentence 12 with something along the lines of ‘B and
energetic’. This would be a mistake. Once we symbolize part of
a sentence as ‘B’, any further structure is lost, as ‘B’ is a sentence
letter of TFL. Conversely, ‘energetic’ is not an English sentence
at all. What we are aiming for is something like ‘B and Barbara
is energetic’. So we need to add another sentence letter to the
symbolization key. Let ‘E’ symbolize ‘Barbara is energetic’. Now
the entire sentence can be symbolized as ‘(B A E)’.

Sentence 13 says one thing about two different subjects. It
says of both Barbara and Adam that they are athletic, even though
in English we use the word ‘athletic’ only once. The sentence can
be paraphrased as ‘Barbara is athletic, and Adam is athletic’. We
can symbolize this in TFL as ‘(B A 4)’, using the same symbol-
ization key that we have been using.

Sentence 14 is slightly more complicated. The word ‘al-
though’ sets up a contrast between the first part of the sentence
and the second part. Nevertheless, the sentence tells us both that
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Barbara is energetic and that she is not athletic. In order to make
each of the conjuncts a sentence letter, we need to replace ‘she’
with ‘Barbara’. So we can rewrite sentence 14 as, ‘Both Barbara
is energetic, and Barbara is not athletic’. The second conjunct
contains a negation, so we paraphrase further: ‘Both Barbara is
energetic and it is not the case that Barbara is athletic’. Now we
can symbolize this with the TFL sentence ‘(£ A =B)’. Note that
we have lost all sorts of nuance in this symbolization. There is
a distinct difference in tone between sentence 14 and ‘Both Bar-
bara is energetic and it is not the case that Barbara is athletic’.
TFL does not (and cannot) preserve these nuances.

Sentence 15 raises similar issues. The word ‘but’ suggests a
contrast or difference, but this is not something that TFL can
deal with. All we can do is paraphrase the sentence as ‘Both
Adam is athletic, and Barbara is more athletic than Adam’. (No-
tice that we once again replace the pronoun ‘him’ with ‘Adam’.)
How should we deal with the second conjunct? We already have
the sentence letter ‘4’, which is being used to symbolize ‘Adam is
athletic’, and the sentence ‘B’ which is being used to symbolize
‘Barbara is athletic’; but neither of these concerns their relative
athleticity. So, to symbolize the entire sentence, we need a new
sentence letter. Let the TFL sentence ‘R’ symbolize the English
sentence ‘Barbara is more athletic than Adam’. Now we can sym-
bolize sentence 15 by ‘(4 A R)’.

A sentence can be symbolized as (d A RB) if it can be
paraphrased in English as ‘Both..., and...’, oras ‘..., but

b

...’y or as ‘although ..., ...,

We noted above that the contrast suggested by ‘but’ cannot
be captured in TFL, and that we simply ignore it. A phenomenon
that cannot simply be ignored is temporal order. E.g., consider:

16. Harry stood up and objected to the proposal.
17. Harry objected to the proposal and stood up.
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If Harry stood up after he objected, sentence 17 is true but sen-
tence 16 is false—the use of ‘and’ here is asymmetric. The symbol
‘A’ of TFL, however, is always symmetric (or “commutative” as
logicians say). TFL cannot deal with asymmetric ‘and’. We’ll as-
sume for all our examples and exercises that ‘and’ is symmetric."

You might be wondering why we put brackets around the con-
junctions. The reason can be brought out by thinking about how
negation interacts with conjunction. Consider:

18. It’s not the case that you will get both soup and salad.
19. You will not get soup but you will get salad.

Sentence 18 can be paraphrased as ‘It is not the case that: both
you will get soup and you will get salad’. Using this symbolization
key:

$1: You will get soup.
S9: You will get salad.

we would symbolize ‘both you will get soup and you will get salad’
as ‘(81 A 82)’. To symbolize sentence 18, then, we simply negate
the whole sentence, thus: ‘=(87 A Sy)’.

Sentence 19 is a conjunction: you will not get soup, and you
will get salad. “You will not get soup’ is symbolized by ‘-S;’. So
to symbolize sentence 19 itself, we offer ‘(=81 A S2)’.

These English sentences are very different, and their symbol-
izations differ accordingly. In one of them, the entire conjunction
is negated. In the other, just one conjunct is negated. Brackets
help us to keep track of things like the scope of the negation.

5.3 Disjunction

Consider these sentences:

*On symmetric and asymmetric conjunction in linguistics, see, e.g., Robin
Lakoff, “If’s, and’s, and but’s about conjunction”, in: C. J. Fillmore and D. T.
Langendoen (eds.), Studies in Linguistic Semantics, Holt, Rinehart & Winston,
1971, and Susan Schmerling, “Asymmetric conjunction and rules of conversa-
tion”, in: P. Cole and J. L. Morgan (eds.), Speech Acts, Brill, 1975, pp. 211-31.
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20. Either Fatima will play videogames, or she will watch
movies.
21. Either Fatima or Omar will play videogames.

For these sentences we can use this symbolization key:

F: Fatima will play videogames
O0: Omar will play videogames
M: Fatima will watch movies

However, we will again need to introduce a new symbol. Sen-
tence 20 is symbolized by ‘(¥ vV M)’. The connective is called
DISJUNCTION. We also say that ‘#” and ‘M’ are the pDISJUNCTS of
the disjunction ‘(F v M)’.

Sentence 21 is only slightly more complicated. There are two
subjects, but the English sentence only gives the verb once. How-
ever, we can paraphrase sentence 21 as ‘Either Fatima will play
videogames, or Omar will play videogames’. Now we can obvi-
ously symbolize it by ‘(# Vv 0)’ again.

A sentence can be symbolized as (4 VvV RB) if it can be
paraphrased in English as ‘Either..., or....’

Sometimes in English, the word ‘or’ is used in a way that
excludes the possibility that both disjuncts are true. This is called
an EXCLUSIVE OR. An exclusive or is clearly intended when it says,
on a restaurant menu, ‘Entrees come with either soup or salad’
you may have soup; you may have salad; but, if you want both
soup and salad, then you have to pay extra.

At other times, the word ‘or’ allows for the possibility that
both disjuncts might be true. This is probably the case with sen-
tence 21, above. Fatima might play videogames alone, Omar
might play videogames alone, or they might both play. Sen-
tence 21 merely says that at least one of them plays videogames.
This is an INCLUSIVE OR. The TFL symbol ‘v’ always symbolizes
an inclusive or.
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It will also help to see how negation interacts with disjunction.
Consider:

22. Either you will not get soup, or you will not get salad.
23. You will get neither soup nor salad.
24. You get either soup or salad, but not both.

Using the same symbolization key as before, sentence 22 can be
paraphrased in this way: ‘Either it is not the case that you get
soup, or it is not the case that you get salad’. To symbolize this
in TFL, we need both disjunction and negation. ‘It is not the
case that you get soup’ is symbolized by ‘=87’. ‘It is not the case
that you get salad’ is symbolized by ‘=8’. So sentence 22 itself
is symbolized by ‘(=$1 V =87)’.

Sentence 23 also requires negation. It can be paraphrased as,
‘It is not the case that: either you get soup or you get salad’. Since
this negates the entire disjunction, we symbolize sentence 23 with
=(81V 8y .

Sentence 24 is an exclusive or. We can break the sentence into
two parts. The first part says that you get one or the other. We
symbolize this as ‘(1 V 82)’. The second part says that you do
not get both. We can paraphrase this as: ‘It is not the case both
that you get soup and that you get salad’. Using both negation
and conjunction, we symbolize this with ‘=(51 A S2)’. Now we just
need to put the two parts together. As we saw above, ‘but’ can
usually be symbolized with ‘A’. So sentence 24 can be symbolized
as ‘(81 V .82) A (851 A 8))

This last example shows something important. Although the
TFL symbol ‘v’ always symbolizes inclusive or, we can symbolize
an exclusive or in TFL. We just have to use a few other symbols as
well.

5.4 Conditional

Consider these sentences:

25. If Jean is in Paris, then Jean is in France.
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26. Jean is in France only if Jean is in Paris.
Let’s use the following symbolization key:

P: Jean is in Paris
F: Jean is in France

Sentence 25 is roughly of this form: ‘if P, then F’. We will use
the symbol ‘=’ to symbolize this ‘if..., then...’ structure. So we
symbolize sentence 25 by ‘(P — F)’. The connective is called
the conpITIONAL. Here, ‘P’ is called the ANTECEDENT of the
conditional ‘(P — F)’, and ‘F” is called the CONSEQUENT.

Sentence 26 is also a conditional. Since the word ‘if’ appears
in the second half of the sentence, it might be tempting to sym-
bolize this in the same way as sentence 25. That would be a
mistake. Your knowledge of geography tells you that sentence 25
is unproblematically true: there is no way for Jean to be in Paris
that doesn’t involve Jean being in France. But sentence 26 is
not so straightforward: were Jean in Dieppe, Lyon, or Toulouse,
Jean would be in France without being in Paris, thereby render-
ing sentence 26 false. Since geography alone dictates the truth of
sentence 25, whereas travel plans (say) are needed to know the
truth of sentence 26, they must mean different things.

In fact, sentence 26 can be paraphrased as ‘If Jean is in
France, then Jean is in Paris’. So we can symbolize it by ‘(¥ —
Py.

A sentence can be symbolized as (s — 9B) if it can be
paraphrased in English as ‘If A, then B’ or ‘A only if B’.

In fact, the conditional can represent many English expressions.
Consider:

27. For Jean to be in Paris, it is necessary that Jean be in France.

28. It is a necessary condition on Jean’s being in Paris that she
be in France.

29. For Jean to be in France, it is sufficient that Jean be in Paris.



CHAPTER 5. CONNECTIVES 41

3o. It is a sufficient condition on Jean’s being in France that she
be in Paris.

If we think about it, all four of these sentences mean the same
as ‘If Jean is in Paris, then Jean is in France’. So they can all be
symbolized by ‘(P — F)’.

It is important to bear in mind that the connective ‘=’ tells us
only that, if the antecedent is true, then the consequent is true. It
says nothing about a causal connection between two events (for
example). In fact, we lose a huge amount when we use ‘-’ to sym-
bolize English conditionals. We will return to this in section 10.3
and chapter 13.

5.5 Biconditional
Consider these sentences:

31. Laika is a dog only if she is a mammal.
32. Laika is a dog if she is a mammal.
33. Laika is a dog if and only if she is a mammal.

We will use the following symbolization key:

D: Laika is a dog
M: Laika is a mammal

For reasons discussed above, sentence 31 can be symbolized by
‘(D — M).

Sentence 33 says something stronger than either sentence 31
or sentence 32. It can be paraphrased as ‘Laika is a dog if Laika is
a mammal, and Laika is a dog only if Laika is a mammal’. This is
just the conjunction of sentences 31 and 32. So we can symbolize
it as ‘(D —» M) A (M — D). We call this a BICONDITIONAL,
because it amounts to stating both directions of the conditional.

We could treat every biconditional this way. So, just as we
do not need a new TFL symbol to deal with exclusive or, we do
not really need a new TFL symbol to deal with biconditionals.
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Because the biconditional occurs so often, however, we will use
the symbol ‘<’ for it. We can then symbolize sentence 33 with
the TFL sentence ‘(D & M)’ .

The expression ‘if and only if” occurs a lot especially in phi-
losophy, mathematics, and logic. For brevity, we can abbreviate
it with the snappier word ‘iff’. We will follow this practice. So ‘if’
with only one ‘f” is the English conditional. But ‘iff’ with two ‘s
is the English biconditional. Armed with this we can say:

A sentence can be symbolized as (d < 9B) if it can be
paraphrased in English as ‘A iff B’; that is, as ‘A if and
only if B’.

A word of caution. Ordinary speakers of English often use
4f ..., then...” when they really mean to use something more
like “...if and only if ...”. Perhaps your parents told you, when
you were a child: ‘if you don’t eat your greens, you won’t get
any dessert’. Suppose you ate your greens, but that your parents
refused to give you any dessert, on the grounds that they were
only committed to the conditional (roughly ‘if you get dessert,
then you will have eaten your greens’), rather than the bicondi-
tional (roughly, ‘you get dessert iff you eat your greens’). Well,
a tantrum would rightly ensue. So, be aware of this when inter-
preting people; but in your own writing, make sure you use the
biconditional iff you mean to.

5.6 Unless

We have now introduced all of the connectives of TFL. We can
use them together to symbolize many kinds of sentences. An
especially difficult case is when we use the English-language con-
nective ‘unless’:

34. Unless you wear a jacket, you will catch a cold.
35. You will catch a cold unless you wear a jacket.
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These two sentences are clearly equivalent. To symbolize them,
we will use the symbolization key:

J: You will wear a jacket
D: You will catch a cold

Both sentences mean that if you do not wear a jacket, then you
will catch a cold. With this in mind, we might symbolize them as
‘(=J — D).

Equally, both sentences mean that if you do not catch a cold,
then you must have worn a jacket. With this in mind, we might
symbolize them as ‘(=D — J)’.

Equally, both sentences mean that either you will wear a jacket
or you will catch a cold. With this in mind, we might symbolize
them as ‘(J v D).

All three are correct symbolizations. Indeed, in chapter 12
we will see that all three symbolizations are equivalent in TFL.

If a sentence can be paraphrased as ‘Unless 4, B, then it
can be symbolized as ‘(- — B)’ or ‘(A V RB)’.

Again, though, there is a little complication. ‘Unless’ can be
symbolized as a conditional; but as we said above, people often
use the conditional (on its own) when they mean to use the bi-
conditional. Equally, ‘unless’ can be symbolized as a disjunction;
but there are two kinds of disjunction (exclusive and inclusive).
So it will not surprise you to discover that ordinary speakers of
English often use ‘unless’ to mean something more like the bicon-
ditional, or like exclusive disjunction. Suppose someone says: ‘I
will go running unless it rains’. They probably mean something
like ‘I will go running iff it does not rain’ (i.e., the biconditional),
or ‘either I will go running or it will rain, but not both’ (i.e., ex-
clusive disjunction). Again: be aware of this when interpreting
what other people have said, but be precise in your writing.
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Practice exercises

A. Using the symbolization key given, symbolize each English
sentence in TFL.

EAlk ol

M: Those creatures are men in suits
C: Those creatures are chimpanzees
G: Those creatures are gorillas

Those creatures are not men in suits.

Those creatures are men in suits, or they are not.

Those creatures are either gorillas or chimpanzees.

Those creatures are neither gorillas nor chimpanzees.

If those creatures are chimpanzees, then they are neither
gorillas nor men in suits.

Unless those creatures are men in suits, they are either
chimpanzees or they are gorillas.

B. Using the symbolization key given, symbolize each English
sentence in TFL.

ST ® P

Mister Ace was murdered

The butler did it

The cook did it

The Duchess is lying

Mister Edge was murdered

The murder weapon was a frying pan

TR aEA

Either Mister Ace or Mister Edge was murdered.

If Mister Ace was murdered, then the cook did it.

If Mister Edge was murdered, then the cook did not do it.
Either the butler did it, or the Duchess is lying.

The cook did it only if the Duchess is lying.

If the murder weapon was a frying pan, then the culprit
must have been the cook.

If the murder weapon was not a frying pan, then the culprit
was either the cook or the butler.
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10.

11.
12.

Mister Ace was murdered if and only if Mister Edge was
not murdered.

The Duchess is lying, unless it was Mister Edge who was
murdered.

If Mister Ace was murdered, he was done in with a frying
pan.

Since the cook did it, the butler did not.

Of course the Duchess is lying!

C. Using the symbolization key given, symbolize each English
sentence in TFL.

AL

S

10.

11.

12.

E7: Ava is an electrician

Ey: Harrison is an electrician

Fy: Ava is a firefighter

Fy: Harrison is a firefighter

S1: Ava is satisfied with her career

So: Harrison is satisfied with his career

Ava and Harrison are both electricians.

If Ava is a firefighter, then she is satisfied with her career.
Ava is a firefighter, unless she is an electrician.

Harrison is an unsatisfied electrician.

Neither Ava nor Harrison is an electrician.

Both Ava and Harrison are electricians, but neither of them
find it satisfying.

Harrison is satisfied only if he is a firefighter.

If Ava is not an electrician, then neither is Harrison, but if
she is, then he is too.

Ava is satisfied with her career if and only if Harrison is
not satisfied with his.

If Harrison is both an electrician and a firefighter, then he
must be satisfied with his work.

It cannot be that Harrison is both an electrician and a fire-
fighter.

Harrison and Ava are both firefighters if and only if neither
of them is an electrician.
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D. Using the symbolization key given, symbolize each English-
language sentence in TFL.

J1: John Coltrane played tenor sax
J2: John Coltrane played soprano sax
J3: John Coltrane played tuba

Mi: Miles Davis played trumpet

My: Miles Davis played tuba

1. John Coltrane played tenor and soprano sax.

2.

Neither Miles Davis nor John Coltrane played tuba.

3. John Coltrane did not play both tenor sax and tuba.
4. John Coltrane did not play tenor sax unless he also played

soprano sax.

5. John Coltrane did not play tuba, but Miles Davis did.

6.
7.

Miles Davis played trumpet only if he also played tuba.

If Miles Davis played trumpet, then John Coltrane played
at least one of these three instruments: tenor sax, soprano
sax, or tuba.

If John Coltrane played tuba then Miles Davis played nei-
ther trumpet nor tuba.

Miles Davis and John Coltrane both played tuba if and only
if Coltrane did not play tenor sax and Miles Davis did not
play trumpet.

E. Give a symbolization key and symbolize the following English
sentences in TFL.

1.

Alice and Bob are both spies.

2. If either Alice or Bob is a spy, then the code has been bro-

ken.

If neither Alice nor Bob is a spy, then the code remains
unbroken.

The German embassy will be in an uproar, unless someone
has broken the code.

Either the code has been broken or it has not, but the Ger-
man embassy will be in an uproar regardless.
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6.

Either Alice or Bob is a spy, but not both.

F. Give a symbolization key and symbolize the following English
sentences in TFL.

1.

4.

5.

If there is food to be found in the pridelands, then Rafiki
will talk about squashed bananas.

. Rafiki will talk about squashed bananas unless Simba is

alive.

Rafiki will either talk about squashed bananas or he won’t,
but there is food to be found in the pridelands regardless.
Scar will remain as king if and only if there is food to be
found in the pridelands.

If Simba is alive, then Scar will not remain as king.

G. For each argument, write a symbolization key and symbolize
all of the sentences of the argument in TFL.

1.

If Dorothy plays the piano in the morning, then Roger
wakes up cranky. Dorothy plays piano in the morning un-
less she is distracted. So if Roger does not wake up cranky,
then Dorothy must be distracted.

It will either rain or snow on Tuesday. If it rains, Neville
will be sad. If it snows, Neville will be cold. Therefore,
Neville will either be sad or cold on Tuesday.

If Zoog remembered to do his chores, then things are clean
but not neat. If he forgot, then things are neat but not clean.
Therefore, things are either neat or clean; but not both.

H. For each argument, write a symbolization key and symbolize
the argument as well as possible in TFL. The part of the passage
in italics is there to provide context for the argument, and doesn’t
need to be symbolized.

1.

2.

It is going to rain soon. I know because my leg is hurting,
and my leg hurts if it’s going to rain.

Spider-man tries to figure out the bad guy’s plan. If Doctor Oc-
topus gets the uranium, he will blackmail the city. I am
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certain of this because if Doctor Octopus gets the uranium,
he can make a dirty bomb, and if he can make a dirty bomb,
he will blackmail the city.

3. A westerner tries to predict the policies of the Chinese government.
If the Chinese government cannot solve the water shortages
in Beijing, they will have to move the capital. They don’t
want to move the capital. Therefore they must solve the
water shortage. But the only way to solve the water short-
age is to divert almost all the water from the Yangzi river
northward. Therefore the Chinese government will go with
the project to divert water from the south to the north.

I. We symbolized an exclusive or using ‘V’, ‘A’, and ‘=’. How could
you symbolize an exclusive or using only two connectives? Is there
any way to symbolize an exclusive or using only one connective?



CHAPTER 6

Sentences of
1FL

The sentence ‘either apples are red, or berries are blue’ is a sen-
tence of English, and the sentence ‘(4 V B)’ is a sentence of TFL.
Although we can identify sentences of English when we encounter
them, we do not have a formal definition of ‘sentence of English’.
But in this chapter, we will define exactly what will count as a
sentence of TFL. This is one respect in which a formal language
like TFL is more precise than a natural language like English.

6.1 Expressions

We have seen that there are three kinds of symbols in TFL:

Atomic sentences AB,C,...,Z,...
with subscripts, as needed 41, B1, 21,49, 495, J375, . . .

Connectives LAV, =,

Brackets (,)

49
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Define an EXPRESSION OF TFL as any string of symbols of TFL.
So: write down any sequence of symbols of TFL, in any order,
and you have an expression of TFL."

6.2 Sentences

Given what we just said, ‘(4A B)’ is an expression of TFL, and so
is ‘) (VO A(==())((B’. But the former is a sentence, and the latter
is gibberish. We want some rules to tell us which TFL expressions
are sentences.

Obviously, individual sentence letters like ‘4’ and ‘G113’ should
count as sentences. (We’ll also call them ATOMIC sentences.) We
can form further sentences out of these by using the various con-
nectives. Using negation, we can get ‘-4’ and ‘-Gy3’. Using
conjunction, we can get ‘(4 A G13)°, ‘(Gi13 A 4)°, ‘(A A A)’, and
‘(G13 A G13)’. We could also apply negation repeatedly to get
sentences like ‘-4’ or apply negation along with conjunction to
get sentences like ‘(A4 A G13)” and ‘=(G13 A —G13)’. The possible
combinations are endless, even starting with just these two sen-
tence letters, and there are infinitely many sentence letters. So
there is no point in trying to list all the sentences one by one.

Instead, we will describe the process by which sentences can
be constructed. Consider negation: Given any sentence o of TFL,
-9 is a sentence of TFL. (Why the funny fonts? We return to this
in section 8.3.)

We can say similar things for each of the other connectives.
For instance, if 9§ and 9 are sentences of TFL, then (o A 98)
is a sentence of TFL. Providing clauses like this for all of the
connectives, we arrive at the following formal definition for a
SENTENCE OF TFL:

'In section 17.8, we will introduce the symbol ‘L’, which will also count as
an atomic sentence.
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-

. Every sentence letter is a sentence.

2. If o is a sentence, then —d is a sentence.

If of and % are sentences, then (s A 9B) is a sentence.
If o and 9 are sentences, then (o vV 9B) is a sentence.

If ol and 9 are sentences, then (dd — 98) is a sentence.

2 G o &

If of and % are sentences, then (d < %) is a sentence.

7. Nothing else is a sentence.

Definitions like this are called iNpDUCTIVE. Inductive defini-
tions begin with some specifiable base elements, and then present
ways to generate indefinitely many more elements by compound-
ing together previously established ones. To give you a better
idea of what an inductive definition is, we can give an inductive
definition of the idea of an ancestor of mine. We specify a base
clause:

> My parents are ancestors of mine.
and then offer further clauses like:

> If x is an ancestor of mine, then x’s parents are ancestors
of mine.

Finally, we stipulate that only what the base and inductive clauses
say are ancestors of mine will count as such.

> Nothing else is an ancestor of mine.

Using this definition, we can easily check to see whether someone
is my ancestor: just check whether she is the parent of the parent
of...one of my parents. And the same is true for our inductive
definition of sentences of TFL. Just as the inductive definition
allows complex sentences to be built up from simpler parts, the
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definition allows us to decompose sentences into their simpler
parts. Once we get down to sentence letters, then we know we
are ok.

Let’s consider some examples.

Suppose we want to know whether or not ‘-——D’ is a sentence
of TFL. Looking at the second clause of the definition, we know
that ‘-—=—D’ is a sentence if ‘-—D’ is a sentence. So now we need
to ask whether or not ‘==D’ is a sentence. Again looking at the
second clause of the definition, ‘=—=D’ is a sentence if ‘-D’ is.
So, ‘=D’ is a sentence if ‘D’ is a sentence. Now ‘D’ is a sentence
letter of TFL, so we know that ‘D’ is a sentence by the first clause
of the definition. So for a compound sentence like ‘-—-D’, we
must apply the definition repeatedly. Eventually we arrive at the
sentence letters from which the sentence is built up.

Next, consider the example ‘-(P A =(=Q V R))’. Looking
at the second clause of the definition, this is a sentence if ‘(P A
=(=Q V R))’ is, and this is a sentence if both ‘P’ and ‘—=(—=Q V R)’
are sentences. The former is a sentence letter, and the latter is a
sentence if ‘(—Q V R)’ is a sentence. It is. Looking at the fourth
clause of the definition, this is a sentence if both ‘=Q’ and ‘R’ are
sentences, and both are!

Ultimately, every sentence is constructed nicely out of sen-
tence letters. When we are dealing with a sentence other than a
sentence letter, we can see that there must be some sentential
connective that was introduced /last, when constructing the sen-
tence. We call that connective the MAIN LOGICAL OPERATOR of
the sentence. In the case of ‘-—=—D’, the main logical operator is
the very first ‘=’ sign. In the case of ‘(P A =(=Q V R))’, the main
logical operator is ‘A’. In the case of ‘((—E V F) — —=G)’, the
main logical operator is ‘—=’.

As a general rule, you can find the main logical operator for
a sentence by using the following method:

> If the first symbol in the sentence is ‘=’, then that is the
main logical operator
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> Otherwise, start counting the brackets. For each open-
bracket, i.e., ‘(’, add 1; for each closing-bracket, i.e., ),
subtract 1. When your count is at exactly 1, the first oper-
ator you hit (apart from a ‘=’) is the main logical operator.

(Note: if you do use this method, then make sure to include
all the brackets in the sentence, rather than omitting some as per
the conventions of section 6.3!)

The inductive structure of sentences in TFL will be important
when we consider the circumstances under which a particular sen-
tence would be true or false. The sentence ‘-——D’ is true if and
only if the sentence ‘-—D’ is false, and so on through the struc-
ture of the sentence, until we arrive at the atomic components.
We will return to this point in part III.

The inductive structure of sentences in TFL also allows us to
give a formal definition of the scope of a negation (mentioned in
section 5.2). The scope of a ‘=’ is the subsentence for which ‘=’
is the main logical operator. Consider a sentence like:

(P A(~(RAB) < Q))

which was constructed by conjoining ‘P’ with ‘(=(R A B) & Q)’.
This last sentence was constructed by placing a biconditional
between ‘=(R A B)’ and ‘Q’. The former of these sentences—a
subsentence of our original sentence—is a sentence for which ‘=’
is the main logical operator. So the scope of the negation is just
‘=(R A B)’. More generally:

The scork of a connective (in a sentence) is the subsen-
tence for which that connective is the main logical opera-
tor.

6.3 Bracketing conventions

Strictly speaking, the brackets in ‘(Q A R)’ are an indispensable
part of the sentence. Part of this is because we might use ‘(Q AR)’
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as a subsentence in a more complicated sentence. For example,
we might want to negate ‘(Q AR)’, obtaining ‘-(Q AR)’. If we just
had ‘Q A R’ without the brackets and put a negation in front of it,
we would have ‘=Q AR’. It is most natural to read this as meaning
the same thing as ‘(-Q A R)’, but as we saw in section 5.2, this is
very different from ‘=(Q A R)’.

Strictly speaking, then, ‘Q A R’ is not a sentence. It is a mere
expression.

When working with TFL, however, it will make our lives eas-
ier if we are sometimes a little less than strict. So, here are some
convenient conventions.

First, we allow ourselves to omit the outermost brackets of a
sentence. Thus we allow ourselves to write ‘Q A R’ instead of
the sentence ‘(Q A R)’. However, we must remember to put the
brackets back in, when we want to embed the sentence into a
more complicated sentence!

Second, it can be a bit painful to stare at long sentences with
many nested pairs of brackets. To make things a bit easier on the
eyes, we will allow ourselves to use square brackets, " and T,
instead of rounded ones. So there is no logical difference between
‘(PvVv Q) and ‘[P V Q], for example.

Combining these two conventions, we can rewrite the un-
wieldy sentence

((H—=1)v({I—=H)A(JVK))
rather more clearly as follows:
[(H—->I)v(I - H]|A(JVE)

The scope of each connective is now much easier to pick out.

Practice exercises

A. Tor each of the following: (a) Is it a sentence of TFL, strictly
speaking? (b) Is it a sentence of TFL, allowing for our relaxed
bracketing conventions?
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(4)
J374 NV = 374

- F

“AS

(G A=G)

(A—> (AN=F))V (D < E)
[(ZeS)=>WIA[]VX]
(F e -D— J)v(CAD)

AR Al S

B. Are there any sentences of TFL that contain no sentence
letters? Explain your answer.

C. What is the scope of each connective in the sentence

[(H—>T)v(I - H)]|A(JVEK)



Ambiguity

In English, sentences can be AMBIGUOUS, i.e., they can have more
than one meaning. There are many sources of ambiguity. One is
lexical ambiguity: a sentence can contain words which have more
than one meaning. For instance, ‘bank’ can mean the bank of
a river, or a financial institution. So I might say that ‘I went to
the bank’ when I took a stroll along the river, or when I went to
deposit a check. Depending on the situation, a different meaning
of ‘bank’ is intended, and so the sentence, when uttered in these
different contexts, expresses different meanings.

A different kind of ambiguity is structural ambiguity. This
arises when a sentence can be interpreted in different ways, and
depending on the interpretation, a different meaning is selected.
A famous example due to Noam Chomsky is the following:

Flying planes can be dangerous.

There is one reading in which “flying’ is used as an adjective which
modifies ‘planes’. In this sense, what’s claimed to be dangerous
are airplanes which are in the process of flying. In another read-
ing, ‘flying’ is a gerund: what’s claimed to be dangerous is the act
of flying a plane. In the first case, you might use the sentence to
warn someone who’s about to launch a hot air baloon. In the sec-
ond case, you might use it to counsel someone against becoming
a pilot.
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When the sentence is uttered, usually only one meaning is
intended. Which of the possible meanings an utterance of a sen-
tence intends is determined by context, or sometimes by how it
is uttered (which parts of the sentence are stressed, for instance).
Often one interpretation is much more likely to be intended, and
in that case it will even be difficult to “see” the unintended read-
ing. This is often the reason why a joke works, as in this example
from Groucho Marx:

One morning I shot an elephant in my pajamas.
How he got in my pajamas, I don’t know.

Ambiguity is related to, but not the same as, vagueness. An
adjective, for instance ‘rich’ or ‘tall,” is VAGUE when it is not always
possible to determine if it applies or not. For instance, a person
who’s 6 ft 4 in (1.9 m) tall is pretty clearly tall, but a building
that size is tiny. Here, context has a role to play in determining
what the clear cases and clear non-cases are (‘tall for a person,’
‘tall for a basketball player,” ‘tall for a building’). Even when the
context is clear, however, there will still be cases that fall in a
middle range.

In TFL, we generally aim to avoid ambiguity. We will try to
give our symbolization keys in such a way that they do not use
ambiguous words or disambiguate them if a word has different
meanings. So, e.g., your symbolization key will need two differ-
ent sentence letters for ‘Rebecca went to the (money) bank’ and
‘Rebecca went to the (river) bank.” Vagueness is harder to avoid.
Since we have stipulated that every case (and later, every valua-
tion) must make every basic sentence (or sentence letter) either
true or false and nothing in between, we cannot accommodate
borderline cases in TFL.

It is an important feature of sentences of TFL that they can-
not be structurally ambiguous. Every sentence of TFL can be
read in one, and only one, way. This feature of TFL is also a
strength. If an English sentence is ambiguous, TFL can help us
make clear what the different meanings are. Although we are
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pretty good at dealing with ambiguity in everyday conversation,
avoiding it can sometimes be terribly important. Logic can then
be usefully applied: it helps philosophers express their thoughts
clearly, mathematicians to state their theorems rigorously, and
software engineers to specify loop conditions, database queries,
or verification criteria unambiguously.

Stating things without ambiguity is of crucial importance in
the law as well. Here, ambiguity can, without exaggeration, be
a matter of life and death. Here is a famous example of where a
death sentence hinged on the interpretation of an ambiguity in
the law. Roger Casement (1864—1916) was a British diplomat who
was famous in his time for publicizing human-rights violations in
the Congo and Peru (for which he was knighted in 1911). He was
also an Irish nationalist. In 1914-16, Casement secretly travelled
to Germany, with which Britain was at war at the time, and tried
to recruit Irish prisoners of war to fight against Britain and for
Irish independence. Upon his return to Ireland, he was captured
by the British and tried for high treason.

The law under which Casement was tried is the Treason Act
of 71351. That act specifies what counts as treason, and so the
prosecution had to establish at trial that Casement’s actions met
the criteria set forth in the Treason Act. The relevant passage
stipulated that someone is guilty of treason

if a man is adherent to the King’s enemies in his
realm, giving to them aid and comfort in the realm,
or elsewhere.

Casement’s defense hinged on the last comma in this sentence,
which is not present in the original French text of the law from
1351. It was not under dispute that Casement had been ‘adher-
ent to the King’s enemies’, but the question was whether being
adherent to the King’s enemies constituted treason only when it
was done in the realm, or also when it was done abroad. The de-
fense argued that the law was ambiguous. The claimed ambiguity
hinged on whether ‘or elsewhere’ attaches only to ‘giving aid and
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comfort to the King’s enemies’ (the natural reading without the
comma), or to both ‘being adherent to the King’s enemies’ and
‘giving aid and comfort to the King’s enemies’ (the natural read-
ing with the comma). Although the former interpretation might
seem far fetched, the argument in its favor was actually not unper-
suasive. Nevertheless, the court decided that the passage should
be read with the comma, so Casement’s antics in Germany were
treasonous, and he was sentenced to death. Casement himself
wrote that he was ‘hanged by a comma’.

We can use TFL to symbolize both readings of the passage,
and thus to provide a disambiguiation. First, we need a symbol-
ization key:

A: Casement was adherent to the King’s enemies in the
realm

G: Casement gave aid and comfort to the King’s enemies
in the realm

B: Casement was adherent to the King’s enemies abroad
H: Casement gave aid and comfort to the King’s enemies
abroad

The interpretation according to which Casement’s behavior was
not treasonous is this:

AV (GV H)

The interpretation which got him executed, on the other hand,
can be symbolized by:

(AvB)V(GVH)

Remember that in the case we’re dealing with, Casement was
adherent to the King’s enemies abroad (B is true), but not in the
realm, and he did not give the King’s enemies aid or comfort in
or outside the realm (4, G, and H are false).

One common source of structural ambiguity in English arises
from its lack of parentheses. For instance, if I say ‘I like movies
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that are not long and boring’, you will most likely think that what
I dislike are movies that are long and boring. A less likely, but
possible, interpretation is that I like movies that are both (a) not
long and (b) boring. The first reading is more likely because
who likes boring movies? But what about ‘I like dishes that are
not sweet and flavorful’> Here, the more likely interpretation
is that I like savory, flavorful dishes. (Of course, I could have
said that better, e.g., ‘I like dishes that are not sweet, yet flavor-
ful’.) Similar ambiguities result from the interaction of ‘and’ with
‘or’. For instance, suppose I ask you to send me a picture of a
small and dangerous or stealthy animal. Would a leopard count?
It’s stealthy, but not small. So it depends whether I'm looking
for small animals that are dangerous or stealthy (leopard doesn’t
count), or whether I'm after either a small, dangerous animal or
a stealthy animal (of any size).

These kinds of ambiguities are called scope ambiguities, since
they depend on whether or not a connective is in the scope of
another. For instance, the sentence, ‘Avengers: Endgame is not
long and boring’ is ambiguous between:

1. Avengers: Endgame is not: both long and boring.
2. Avengers: Endgame is both: not long and boring.

Sentence 2 is certainly false, since Avengers: Endgame is over three
hours long. Whether you think sentence 1 is true depends on if
you think it is boring or not. We can use the symbolization key:

B: Avengers: Endgame is boring
L: Avengers: Endgame is long

Sentence 1 can now be symbolized as ‘~(L A B)’, whereas sen-
tence 2 would be ‘=L A B’. In the first case, the ‘A’ is in the scope
of ‘=, in the second case ‘=’ is in the scope of ‘A’.

The sentence ‘Tai Lung is small and dangerous or stealthy’ is
ambiguous between:

3. Tai Lung is either both small and dangerous or stealthy.
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4. Tai Lung is both small and either dangerous or stealthy.
We can use the following symbolization key:

D: Tai Lung is dangerous
§: Tai Lung is small
T': Tai Lung is stealthy

The symbolization of sentence 3 is ‘(S A D) V T’ and that of
sentence 4 is ‘S A (D Vv T')’. In the first, ‘A’ is in the scope of ‘V’,
and in the second ‘V’ is in the scope of ‘A’.

Practice exercises

A. The following sentences are ambiguous. Give symbolization
keys for each and symbolize the different readings.

1. Haskell is a birder and enjoys watching cranes.
2. The zoo has lions or tigers and bears.
3. The flower is not red or fragrant.



CHAPTER 8

Use and

mention

In this Part, we have talked a lot about sentences. So we should
pause to explain an important, and very general, point.

8.1 Quotation conventions

Consider these two sentences:

> Aristotle is the founding father of logic.
> The expression ‘Aristotle’ is composed of one uppercase
letter and eight lowercase letters.

When we want to talk about the founding father of logic, we use
his name. When we want to talk about the name of the founding
father of logic, we mention that name, which we do by putting it
in quotation marks.

There is a general point here. When we want to talk about
things in the world, we just use words. When we want to talk
about words, we typically have to mention those words. We need
to indicate that we are mentioning them, rather than using them.
To do this, some convention is needed. We can put them in
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quotation marks, or display them centrally in the page (say). So
this sentence:

> ‘Aristotle’ was an ancient Greek philosopher.

says that some expression was an ancient Greek philosopher.
That’s false. The man was a Greek philosopher; his name wasn’t.
Conversely, this sentence:

> Aristotle is composed of one uppercase letter and eight low-
ercase letters.

also says something false: Aristotle is a man (or was when he was
alive), made of flesh rather than letters. One final example:

> “‘Aristotle’ ” is the name of ‘Aristotle’.

On the left-hand-side, here, we have the name of a name. On the
right hand side, we have a name. Perhaps this kind of sentence
only occurs in logic textbooks, but it is true nonetheless.

Those are just general rules for quotation, and you should ob-
serve them carefully in all your work! To be clear, the quotation-
marks here do not indicate reported speech. They indicate that
you are moving from talking about an object, to talking about a
name of that object.

8.2 Object language and metalanguage

These general quotation conventions are very important for us.
After all, we are describing a formal language here, TFL, and so
we must often mention expressions from TFL.

When we talk about a language, the language that we are
talking about is called the OBJECT LANGUAGE. The language that
we use to talk about the object language is called the METALAN-
GUAGE.

For the most part, the object language in this chapter has been
the formal language that we have been developing: TFL. The
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metalanguage is English. Not conversational English exactly, but
English supplemented with some additional vocabulary to help
us get along.
Now, we have used uppercase letters as sentence letters of
TFL:
A,B,C,Z,A1,By, Ags, J375, . . .

These are sentences of the object language (TFL). They are not
sentences of English. So we must not say, for example:

> D is a sentence letter of TFL.

Obviously, we are trying to come out with an English sentence
that says something about the object language (TFL), but ‘D’ is
a sentence of TFL, and not part of English. So the preceding is
gibberish, just like:

> Schnee ist weil} is a German sentence.
What we surely meant to say, in this case, is:
> ‘Schnee ist weil}’ is a German sentence.
Equally, what we meant to say above is just:
> ‘D’ is a sentence letter of TFL.

The general point is that, whenever we want to talk in English
about some specific expression of TFL, we need to indicate that
we are mentioning the expression, rather than using it. We can
either deploy quotation marks, or we can adopt some similar
convention, such as placing it centrally in the page.

8.3 Metavariables

However, we do not just want to talk about specific expressions
of TFL. We also want to be able to talk about any arbitrary sen-
tence of TFL. Indeed, we had to do this in section 6.2, when we
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presented the inductive definition of a sentence of TFL. We used
uppercase script letters to do this, namely:

A,RB,6,9,...

These symbols do not belong to TFL. Rather, they are part of
our (augmented) metalanguage that we use to talk about any ex-
pression of TFL. To explain why we need them, recall the second
clause of the recursive definition of a sentence of TFL:

2. If o is a sentence, then —d is a sentence.
This talks about arbitrary sentences. If we had instead offered:
o’. If ‘A’ is a sentence, then ‘-4’ is a sentence.

this would not have allowed us to determine whether ‘-8B’ is a
sentence. To emphasize:

‘d’ is a symbol (called a METAVARIABLE) in augmented En-
glish, which we use to talk about expressions of TFL. ‘4’
is a particular sentence letter of TFL.

But this last example raises a further complication, concern-
ing quotation conventions. We did not include any quotation
marks in the second clause of our inductive definition. Should
we have done so?

The problem is that the expression on the right-hand-side of
this rule, i.e., ‘~df’, is not a sentence of English, since it con-
tains ‘=’. So we might try to write:

o’ If ol is a sentence, then ‘—~¢f’ is a sentence.

But this is no good: ‘=df’ is not a TFL sentence, since ‘d’ is a
symbol of (augmented) English rather than a symbol of TFL.
What we really want to say is something like this:

2’”. If d is a sentence, then the result of concatenating the sym-
bol ‘=’ with the sentence d is a sentence.
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This is impeccable, but rather long-winded. But we can avoid
long-windedness by creating our own conventions. We can per-
fectly well stipulate that an expression like ‘~’ should simply be
read directly in terms of rules for concatenation. So, officially, the
metalanguage expression ‘~d’ simply abbreviates:

the result of concatenating the symbol ‘-’ with the
sentence o

and similarly, for expressions like ‘(s A B)’, ‘(4 V B)’, etc.

8.4 Quotation conventions for arguments

One of our main purposes for using TFL is to study arguments,
and that will be our concern in part III. In English, the premises of
an argument are often expressed by individual sentences, and the
conclusion by a further sentence. Since we can symbolize English
sentences, we can symbolize English arguments using TFL.

Or rather, we can use TFL to symbolize each of the sentences
used in an English argument. However, TFL itself has no way to
flag some of them as the premises and another as the conclusion
of an argument. (Contrast this with natural English, which uses
words like ‘so’, ‘therefore’, etc., to mark that a sentence is the
conclusion of an argument.)

So, we need another bit of notation. Suppose we want to
symbolize the premises of an argument with o, ..., d, and the
conclusion with €. Then we will write:

A,....d, . 6

The role of the symbol ‘..’ is simply to indicate which sentences
are the premises and which is the conclusion.

Strictly, the symbol ‘.. will not be a part of the object lan-
guage, but of the metalanguage. As such, one might think that we
would need to put quote-marks around the TFL-sentences which
flank it. That is a sensible thought, but adding these quote-marks
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would make things harder to read. Moreover—and as above—
recall that we are stipulating some new conventions. So, we can
simply stipulate that these quote-marks are unnecessary. That is,
we can simply write:

A,A—> B.. B

without any quotation marks, to indicate an argument whose
premises are (symbolized by) ‘4’ and ‘4 — B’ and whose con-
clusion is (symbolized by) ‘B’.



PART il

Truth tables



Characteristic
truth tables

Any sentence of TFL is composed of sentence letters, possibly
combined using sentential connectives. The truth value of the
compound sentence depends only on the truth value of the sen-
tence letters that comprise it. In order to know the truth value of
‘(D A E), for instance, you only need to know the truth value of
‘D’ and the truth value of ‘E’.

We introduced five connectives in chapter 5. So we just need
to explain how they map between truth values. For convenience,
we abbreviate ‘True’ with ‘T’ and ‘False’ with ‘F’. (But, to be clear,
the two truth values are True and False; the truth values are not
letters!)

Negation. For any sentence d: If o is true, then —d is false;
and if —d is true, then o is false. We can summarize this in the
characteristic truth table for negation:

a4 | -d
T| F
F| T
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Conjunction. For any sentences o and %, AAR is true if and
only if both o and 9B are true. We can summarize this in the
characteristic truth table for conjunction:

d RB|AANSB
T T T
T F F
F T F
F F F

Note that the truth value for 4 A% is always the same as the truth
value for % A dl. Connectives that have this property are called
commutative.

Disjunction. Recall that ‘v’ always represents inclusive or. So,
for any sentences o and 9B, d vV R is true if and only if either A
or R is true. We can summarize this in the characteristic truth
table for disjunction:

dv R

oo 3R
= mAa8
o | <

Like conjunction, disjunction is commutative.

Conditional. We’re just going to come clean and admit it: Con-
ditionals are a mess. Exactly how much of a mess they are is
philosophically contentious. We’ll discuss a few of the subtleties in
section 10.3 and chapter 13. For now, we are going to stipulate
the following: o1 — 9 is false if and only if o is true and &
is false. The connective with these stipulated truth conditions is
called the MATERIAL CONDITIONAL. We can summarize this with
a characteristic truth table for the conditional.
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A B | d—>%RB
T T T
T F F
F T T
F F T

The conditional is not commutative. You cannot swap the an-
tecedent and consequent without changing the meaning of the
sentence; A — 9B and 9B — o have different truth tables.

Biconditional. Since a biconditional is to be the same as the
conjunction of the conditionals running in both directions, we
will want the truth table for the biconditional to be:

A B | AR
T T T
T F F
F T F
F F T

The connective with this truth table is also often called the MATE-
RIAL BICONDITIONAL. Unsurprisingly, the biconditional is com-
mutative.
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Truth-

functional
connectives

10.1 The idea of truth-functionality

Let’s introduce an important idea.

A connective is TRUTH-FUNCTIONAL iff the truth value of
a sentence with that connective as its main logical oper-
ator is uniquely determined by the truth value(s) of the
constituent sentence(s).

Every connective in TFL is truth-functional. The truth value
of a negation is uniquely determined by the truth value of the
unnegated sentence. The truth value of a conjunction is uniquely
determined by the truth value of both conjuncts. The truth value
of a disjunction is uniquely determined by the truth value of both
disjuncts, and so on. To determine the truth value of some TFL
sentence, we only need to know the truth value of its components.
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This is what gives TFL its name: it is ¢ruth-functional logic.

Many languages use connectives that are not truth-functional.
In English, for example, we can form a new sentence from any
simpler sentence by prefixing it with ‘It is necessarily the case
that...’. The truth value of this new sentence is not fixed solely
by the truth value of the original sentence. For consider two true
sentences:

1. 2+2=4
2. Shostakovich wrote fifteen string quartets.

Whereas it is necessarily the case that 2 + 2 = 4, it is not nec-
essarily the case that Shostakovich wrote fifteen string quartets.
If Shostakovich had died earlier, he would have failed to finish
Quartet no. 15; if he had lived longer, he might have written a few
more. So ‘It is necessarily the case that...’ is not truth-functional.

10.2 Symbolizing versus translating

All of the connectives of TFL are truth-functional, but more than
that: they really do nothing dut map us between truth values.
When we symbolize a sentence or an argument in TFL, we
ignore everything besides the contribution that the truth values of
a component might make to the truth value of the whole. There
are subtleties to our ordinary claims that far outstrip their mere
truth values. Sarcasm; poetry; snide implicature; emphasis; these
are important parts of everyday discourse, but none of this is
retained in TFL. As remarked in chapter 5, TFL cannot capture
the subtle differences between the following English sentences:

Dana is a logician and Dana is a nice person

Although Dana is a logician, Dana is a nice person

Dana is a logician despite being a nice person

Dana is a nice person, but also a logician

Dana’s being a logician notwithstanding, he is a nice person

Al al o
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All of the above sentences will be symbolized with the same TFL
sentence, perhaps ‘L A N’.

Now, we keep saying that we use TFL sentences to symbolize
English sentences. Many other textbooks talk about translating
English sentences into TFL. However, a good translation should
preserve certain facets of meaning, and—as we just saw—TFL
just cannot do that. This is why we will speak of symbolizing En-
glish sentences, rather than of translating them.

This affects how we should understand our symbolization
keys. Consider a key like:

L: Dana is a logician.
N: Dana is a nice person.

Other textbooks will understand this as a stipulation that the
TFL sentence ‘L’ should mean that Dana is a logician, and that
the TFL sentence ‘N’ should mean that Dana is a nice person.
But TFL just is totally unequipped to deal with meaning. The
preceding symbolization key is doing no more and no less than
stipulating that the TFL sentence ‘L’ should take the same truth
value as the English sentence ‘Dana is a logician’ (whatever that
might be), and that the TFL sentence ‘N’ should take the same
truth value as the English sentence ‘Dana is a nice person’ (what-
ever that might be).

When we treat a TFL sentence as symbolizing an English
sentence, we are stipulating that the TFL sentence is to
take the same truth value as that English sentence.

10.3 Indicative versus subjunctive
conditionals
We want to bring home the point that TFL can onrly deal with

truth functions by considering the case of the conditional. When
we introduced the characteristic truth table for the material con-
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ditional in chapter g, we did not say anything to justify it. Let’s
now offer a justification, which follows Dorothy Edgington.’

Suppose that Lara has drawn some shapes on a piece of pa-
per, and coloured some of them in. We have not seen them, but
nevertheless claim:

If any shape is grey, then that shape is also circular.

As it happens, Lara has drawn the following:

® Ok

In this case, our claim is surely true. Shapes C and D are not grey,
and so can hardly present counterexamples to our claim. Shape A
is grey, but fortunately it is also circular. So our claim has no
counterexamples. It must be true. That means that each of the
following instances of our claim must be true too:

> If A is grey, then it is circular

(true antecedent, true consequent)
> If C is grey, then it is circular

(false antecedent, true consequent)
> If D is grey, then it is circular

(false antecedent, false consequent)

However, if Lara had drawn a fourth shape, thus:

IDIOE

then our claim would have been false. So this claim must also be

false:

> If B is grey, then it is circular
(true antecedent, false consequent)

'Dorothy Edgington, “Conditionals”, Stanford Encyclopedia of Philosophy
(Fall 2020) (https:/plato.stanford.edu/archives/fall2o2o/entries/conditionals/).


https://plato.stanford.edu/archives/fall2020/entries/conditionals/

CHAPTER 10. TRUTH-FUNCTIONAL CONNECTIVES 76

Now, recall that every connective of TFL has to be truth-
functional. This means that the truth values of the antecedent
and consequent alone must uniquely determine the truth value
of the conditional as a whole. Thus, from the truth values of our
four claims—which provide us with all possible combinations of
truth and falsity in antecedent and consequent—we can read off
the truth table for the material conditional.

What this argument shows is that ‘=’ is the best candidate
for a truth-functional conditional. Otherwise put, it is the best
conditional that TFL can provide. But is it any good, as a surrogate
for the conditionals we use in everyday language? Consider two
sentences:

1. If Hillary Clinton had won the 2016 election, then she
would have been the first woman president of the USA.

2. If Hillary Clinton had won the 2016 election, then she
would have turned into a helium-filled balloon and floated
away into the night sky.

Sentence 1 is true; sentence ¢ is false, but both have false an-
tecedents and false consequents. (Hillary did not win; she did
not become the first woman president of the US; and she did not
fill with helium and float away.) So the truth value of the whole
sentence is not uniquely determined by the truth value of the
parts.

The crucial point is that sentences 1 and 2 employ subjunctive
conditionals, rather than indicative conditionals. They ask us to
imagine something contrary to fact—after all, Hillary Clinton
lost the 2016 election—and then ask us to evaluate what would
have happened in that case. Such considerations simply cannot
be tackled using ‘—’.

We will say more about the difficulties with conditionals in
chapter 13. For now, we will content ourselves with the obser-
vation that ‘=’ is the only candidate for a truth-functional con-
ditional for TFL, but that many English conditionals cannot be
represented adequately using ‘—’. TFL is an intrinsically limited
language.
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Complete
truth tables

So far, we have used symbolization keys to assign truth values to
TFL sentences indirectly. For example, we might say that the TFL
sentence ‘B’ is to be true iff Big Ben is in London. Since Big Ben
is in London, this symbolisation would make ‘B’ true. But we can
also assign truth values directly. We can simply stipulate that ‘B’
is to be true, or stipulate that it is to be false. Such stipulations
are called valuations:

A VALUATION is any assignment of truth values to particu-
lar sentence letters of TFL.

The power of truth tables lies in the following. Each row
of a truth table represents a possible valuation. The complete
truth table represents all possible valuations. And the truth table
provides us with a means to calculate the truth value of complex
sentences, on each possible valuation. But all of this is easiest to
explain by example.
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11.1 A worked example

Consider the sentence ‘(H A I) — H’. There are four possible
ways to assign True and False to the sentence letter ‘H’ and ‘I’—
four valuations—which we can represent as follows:

| (HAD)>H

SR e

1
T
F
T
F

To calculate the truth value of the entire sentence ‘(H AI) — H’,
we first copy the truth values for the sentence letters and write
them underneath the letters in the sentence:

H 1| HAN)>H
T T| T T T
T F| T F T
F T|F T F
F F| F F F

Now consider the subsentence ‘(H A I)’. This is a conjunction,
(ANDRB), with ‘H’ as o and with ‘I’ as %B. The characteristic truth
table for conjunction gives the truth conditions for any sentence
of the form (o A 9B), whatever o and 9B might be. It represents
the point that a conjunction is true iff both conjuncts are true. In
this case, our conjuncts are just ‘’ and ‘I’. They are both true
on (and only on) the first line of the truth table. Accordingly, we
can calculate the truth value of the conjunction on all four rows.

d AB
H I|(HAN)—H
T T| TTT T
T F| TFF T
F T| FFT F
F F| FFF F
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Now, the entire sentence that we are dealing with is a conditional,
A — 9B, with ‘(H A I) as o and with ‘H’ as 8. On the second
row, for example, ‘(H A I)’ is false and ‘H’ is true. Since a con-
ditional is true when the antecedent is false, we write a ‘T’ in the
second row underneath the conditional symbol. We continue for
the other three rows and get this:

A —B
H I | (HAI)—>H
T T T TT
T F F TT
F T F TF
F F F TF

The conditional is the main logical operator of the sentence, so
the column of “I’s underneath the conditional tells us that the
sentence ‘(H A I) — H’ is true regardless of the truth values of
‘H’ and ‘I’. They can be true or false in any combination, and
the compound sentence still comes out true. Since we have con-
sidered all four possible assignments of truth and falsity to ‘H’
and ‘I’—since, that is, we have considered all the different valua-
tions—we can say that ‘(H A I) — H’ is true on every valuation.

In this example, we have not repeated all of the entries in
every column in every successive table. When actually writing
truth tables on paper, however, it is impractical to erase whole
columns or rewrite the whole table for every step. Although it is
more crowded, the truth table can be written in this way:

H 1| HAN)>H
T T| TTTTT
T F| TFFTT
F T| FFTTF
F

F| FFFTF

Most of the columns underneath the sentence are only there for
bookkeeping purposes. The column that matters most is the col-
umn underneath the main logical operator for the sentence, since
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this tells you the truth value of the entire sentence. We have em-
phasized this, by putting this column in bold. When you work
through truth tables yourself, you should similarly emphasize it
(perhaps by highlighting).

11.2 Building complete truth tables

A COMPLETE TRUTH TABLE has a line for every possible assign-
ment of True and False to the relevant sentence letters. Each line
represents a valuation, and a complete truth table has a line for
all the different valuations.

The size of the complete truth table depends on the num-
ber of different sentence letters in the table. A sentence that
contains only one sentence letter requires only two rows, as in
the characteristic truth table for negation. This is true even
if the same letter is repeated many times, as in the sentence
‘I(C & C) — C] A=(C — C)’. The complete truth table re-
quires only two lines because there are only two possibilities: ‘C’
can be true or it can be false. The truth table for this sentence
looks like this:

C|[(CoC)>CIA-(C—0)
T| TTT TT FF TTT
F FTF FF FF FTF

Looking at the column underneath the main logical operator, we
see that the sentence is false on both rows of the table; i.e., the
sentence is false regardless of whether ‘C’ is true or false. It is
false on every valuation.

There will be four lines in the complete truth table for a
sentence containing two sentence letters, as in the characteris-
tic truth tables, or the truth table for ‘(H A 1) — H’.

There will be eight lines in the complete truth table for a
sentence containing three sentence letters, e.g.:
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MA(NVP)
TTTTT
TTTTF
TTFTT
TFFFF
FFTTT
FFTTF
FFFTT
FFFFF

o a8 R
I S NN IS IS g
RN R RE RN P

From this table, we know that the sentence ‘M A (N V P)’ can be
true or false, depending on the truth values of ‘A’, ‘N’, and ‘P’.

A complete truth table for a sentence that contains four dif-
ferent sentence letters requires 16 lines. Five letters, 32 lines. Six
letters, 64 lines. And so on. To be perfectly general: If a complete
truth table has » different sentence letters, then it must have 2"
lines.

In order to fill in the columns of a complete truth table, begin
with the right-most sentence letter and alternate between “T” and
‘F’. In the next column to the left, write two “T’s, write two ‘F’s,
and repeat. For the third sentence letter, write four ‘T’s followed
by four ‘F’s. This yields an eight line truth table like the one
above. For a 16 line truth table, the next column of sentence
letters should have eight “I’s followed by eight ‘F’s. For a 32 line
table, the next column would have 16 “T’s followed by 16 ‘F’s,
and so on.

11.3 More about brackets

Consider these two sentences:

((AAB)AC)
(AN (BAQC))
These are truth functionally equivalent. Consequently, it will

never make any difference from the perspective of truth value—
which is all that TFL cares about (see chapter 10)—which of the
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two sentences we assert (or deny). Even though the order of the
brackets does not matter as to their truth, we should not just drop
them. The expression

ANBAC

is ambiguous between the two sentences above. The same obser-
vation holds for disjunctions. The following sentences are logi-
cally equivalent:

((4vB)vO()
(Av (BV(Q))
But we should not simply write:
AV BV C(C

In fact, it is a specific fact about the characteristic truth table of v
and A that guarantees that any two conjunctions (or disjunctions)
of the same sentences are truth functionally equivalent, however
you place the brackets. T#his is only true of conjunctions, disjunctions,
and biconditionals, however. The following two sentences have
different truth tables:

((4— B) - ()
(4— (B— ()
So if we were to write:
A—-B—>C

it would be dangerously ambiguous. Leaving out brackets in this
case would be disastrous. Equally, these sentences have different
truth tables:

((AvB)AC)
AV (BAQG))
So if we were to write:
AVBAC

it would be dangerously ambiguous. Never write this. The moral
is: never drop brackets (except the outermost ones).
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Practice exercises

A. Offer complete truth tables for each of the following:

© e s PP

A— A

C —-C

(A— B)V (B — A)
(AANB) » (BV A)
~(AV B) & (=A A =B)
[(AAB)A=(AAB)|AC
[AAB)AC]— B
-[(C v 4) v B]

B. Check all the claims made in section 11.3, i.e., show that:

-

‘((AAB)AC) and ‘(AA (BAC)) have the same truth table

2. ‘((AvB)v () and ‘(4V (BV(C)) have the same truth table

‘((AvB)AC) and ‘(AV (B A C)) do not have the same
truth table

‘(4 - B) > C) and (4 — (B — (C))’ do not have the
same truth table

Also, check whether:

5.

‘(4 & B) & C) and ‘(4 < (B < ()) have the same
truth table

C. Write complete truth tables for the following sentences and
mark the column that represents the possible truth values for the
whole sentence.

U2 b

-(§ o (P-Y23))
S[(XAY)V(XVY)]

[C - (DVE)]A-C
~(GA(BAH)) o (GV (BVH))
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D. Write complete truth tables for the following sentences and
mark the column that represents the possible truth values for the
whole sentence.

(DA-D) > G
(mPV-M)>M
—-=(=A4 A =B)

[DAR) > I] - =(DVR)
=[(D & 0) & A] —» (=D A 0)

ANl i

If you want additional practice, you can construct truth tables
for any of the sentences and arguments in the exercises for the
previous chapter.



CHAPTER 12

Semantic
concepts

In the previous chapter, we introduced the idea of a valuation and
showed how to determine the truth value of any TFL sentence,
on any valuation, using a truth table. In this chapter, we will
introduce some related ideas, and show how to use truth tables
to test whether or not they apply.

12.1  Tautologies and contradictions

In chapter 3, we explained necessary truth and necessary falsity.
Both notions have surrogates in TFL. We will start with a surro-
gate for necessary truth.

o is a TAUTOLOGY iff it is true on every valuation.

We can use truth tables to decide whether a sentence is a
tautology. If the sentence is true on every line of its complete
truth table, then it is true on every valuation, so it is a tautology.
In the example of chapter 11, ‘(H A I) — H’ is a tautology.

This is only, though, a surrogate for necessary truth. There
are some necessary truths that we cannot adequately symbolize

85
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in TFL. One example is ‘2+2 = 4’. This must be true, but if we try
to symbolize it in TFL, the best we can offer is a sentence letter,
and no sentence letter is a tautology. Still, if we can adequately
symbolize some English sentence using a TFL sentence which
is a tautology, then that English sentence expresses a necessary
truth.

We have a similar surrogate for necessary falsity:

o is a CONTRADICTION (in TFL) iff it is false on every
valuation.

We can use truth tables to decide whether a sentence is a con-
tradiction. If the sentence is false on every line of its complete
truth table, then it is false on every valuation, so it is a contradic-
tion. In the example of chapter 11, ‘[(C < C) = C]A=(C — C)’
is a contradiction.

12.2 Equivalence

Here is a similar useful notion:

o and B are EQUIVALENT (in TFL) iff, for every valuation,
their truth values agree, i.e., if there is no valuation in
which they have opposite truth values.

We have already made use of this notion, in effect, in sec-
tion 11.3; the point was that ‘(4 A B) A C’ and ‘A A (B A C)’ are
equivalent. Again, it is easy to test for equivalence using truth
tables. Consider the sentences ‘(P Vv Q)’ and ‘-P A =Q’. Are
they equivalent? To find out, we construct a truth table.

Q| -(PvQ) | -PA-0Q
FTTT | FTFFT
FTTF | FTFTF
FFTT | TFFFT
TFFF | TETTF

oo Y
oo e
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Look at the columns for the main logical operators; negation for
the first sentence, conjunction for the second. Go through the
rows in the table one by one and compare the truth values in the
columns for the main logical operators. On the first three rows,
both are false. On the final row, both are true. Since they match
on every row, the two sentences are equivalent.

12.3 Satisfiability

In chapter 3, we said that sentences are jointly possible iff it is
possible for all of them to be true at once. We can offer a surro-
gate for this notion too:

Aqi,dg,...,d, are JOINTLY SATISFIABLE (in TFL) iff there
is some valuation which makes them all true.

Derivatively, sentences are JOINTLY UNSATISFIABLE iff no val-
uation makes them all true. Again, it is easy to test for joint
satisfiability using truth tables.

12.4 Entailment and validity

The following idea is closely related to that of joint satisfiability:

The sentences $f1,9o,...,94, ENTAIL (in TFL) the sen-
tence € iff no valuation of the relevant sentence letters
makes all of o1,4,...,d, true and 6 false.

Again, it is easy to test this with a truth table. To check
whether ‘=L — (/ Vv L)’ and ‘—L’ entail ‘J’, we simply need to
check whether there is any valuation which makes both ‘-L —
(J VL) and ‘=L’ true whilst making ‘/’ false. So we use a truth
table:
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L|-Lo>(JVvL) | -L| ]
T|FTTTTT | FT|T
F|TFTTTF | TF| T
T F
F

FTTFTT | FT
TFFFFF | TF

oo g 1~

by

The only row on which both‘=L — (/ vV L)’ and ‘=L’ are true is
the second row, and that is a row on which ¢/’ is also true. So
‘<L — (J VL) and ‘=L’ entail ‘J’.

12.5 The double turnstile

In what follow, we will use the notion of entailment rather a lot
in this book. It will help us, then, to introduce a symbol that
abbreviates it. Rather than saying that the TFL sentences d,
dy, ... and 4, together entail ‘€, we will abbreviate this by:

A, Ay, ..., A, E G

The symbol ‘¢’ is known as the double turnstile, since it looks like
a turnstile with two horizontal beams.

Let’s be clear. ‘£’ is not a symbol of TFL. Rather, it is a symbol
of our metalanguage, augmented English (recall the difference
between object language and metalanguage from chapter 8). So
the metalanguage sentence:

A,Ad— BeRB
is just an abbreviation for this metalanguage sentence:
The TFL sentences o and o — & entail R

Note that there is no limit on the number of TFL sentences that
can be mentioned before the symbol ‘?’. Indeed, we can even
consider the limiting case:

EB
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This says that there is no valuation which makes all the sentences
mentioned on the left side of ‘¢’ true whilst making all sentences
on the right side (in this case, €) false. Since no sentences are
mentioned on the left side of ‘¢’ in this case, this just means that
there is no valuation which makes € false. Otherwise put, it says
that every valuation makes € true. Otherwise put, it says that 6
is a tautology. Equally, to say that o is a contradiction, we could
write:
dE

to mean that no valuation makes o true.
Sometimes, we will want to deny that there is a tautological
entailment, and say something of this shape:

it is not the case that oq,...,9, E 6

In that case, we can just slash the turnstile through, and write:
&11,&12,. .. ,Sﬂn £ 6

This means that some valuation makes all of o1, . . .,d, true whilst
making 6 false. Note that it does not follow that dl1,...,d, £ =6,
for it is possible that some other valuation makes all of d,...,d,
true and makes € true. For instance, P ¥ Q but also P £ =(Q.

12.6 °‘F’ versus ‘—’

We now want to compare and contrast ‘=’ and ‘—’.

Observe: ¢ £ 6 iff no valuation of the sentence letters makes
d true and 6 false.

Observe: 9l — 6 is a tautology iff no valuation of the sen-
tence letters makes 9§ — € false. Since a conditional is true ex-
cept when its antecedent is true and its consequent false, d — 6
is a tautology iff no valuation makes ¢ true and € false.

Combining these two observations, we see that d — € is
a tautology iff d £ €. But there is a really, really important
difference between ‘¢’ and ‘=’
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> ‘=’ is a sentential connective of TFL.
> ‘E’ is a symbol of augmented English.

Indeed, when ‘=’ is flanked with two TFL sentences, the re-
sult is a longer TFL sentence. By contrast, when we use ‘¢, we
form a metalinguistic sentence that mentions the surrounding TFL
sentences.

The English word ‘implies’ is often used as a synonym for
‘entails’, i.e., ‘F’. Some logicians also use it for the conditional,
i.e.,, “>’. Since this is liable to commit the confusion warned
about above, we avoid the use of ‘implies’ as much as possible.
(Whenever it is used, it means ‘entails’.)

Practice exercises

A. Revisit your answers to exercise 11A. Determine which sen-
tences were tautologies, which were contradictions, and which
were neither tautologies nor contradictions.

B. Use truth tables to determine whether these sentences are
jointly satisfiable, or jointly unsatisfiable:

1. A—> A, -A— -A, ANA, AV A
2. AVB,A— C,B—C

3. BA(CV A),A— B,~(BVC)

4. A (BVC(C),C— -4, A— —-B

C. Use truth tables to determine whether each argument is valid
or invalid.

A—A.:. A

A— (AN=A) .. -4

AV (B— A)..-A— -B
AVB,BVC,~A..BAC
(BAA) > C,(CAA) - B..(CAB)—> 4

ALl S
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D. Determine whether each sentence is a tautology, a contradic-
tion, or a contingent sentence, using a complete truth table.

1. -BAB

2. =DV D

3. (AANB)V (BAA)

4. 1[4 — (B — A)]

5 Ae [A— (BA-B)]

6. [(AAB) & B] - (A— B)

E. Determine whether each the following sentences are logically
equivalent using complete truth tables. If the two sentences re-
ally are logically equivalent, write “equivalent.” Otherwise write,
“Not equivalent.”

. A and -4

. AAN-Aand -B < B

. [(AvB)vCC]land [AV (BV ()]

. AV (BAC)and (AVB)A(AV C)
[AN(AVvB)] >Band A— B

Cus w0 M

F. Determine whether each the following sentences are logically
equivalent using complete truth tables. If the two sentences really
are equivalent, write “equivalent.” Otherwise write, “not equiva-
lent.”

A— Aand 4 < A4

-(4A — B) and -4 — —-B

AV Band -4— B
(A—>B)—>Cand 44— (B— C)
Ao (B C)and AN (BAQ)

EAlL ol

G. Determine whether each collection of sentences is jointly sat-
isfiable or jointly unsatisfiable using a complete truth table.

1. AN-B,—~(A— B),B— A4
2. AVB,A— -~A, B— —B
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3. —|(—|AVB),A—>—|C,A—>(B—>C)
4. A— B, AN-B
5 A—> (B—-C),A4—->B)—->C,A—->C

H. Determine whether each collection of sentences is jointly sat-
isfiable or jointly unsatisfiable, using a complete truth table.

-B,A— B, A

-(AvB),A— B,B— A4

AV B, =B, =B — -4

Ao B,-BV-4,A— B
(AvB)v(C,-AVvV-B,-CV -B

EANL S

I. Determine whether each argument is valid or invalid, using a
complete truth table.

1. A—> B,B.. 4

2. AoB,Bo(C.. A C
3 4A—-B,A—-C..B—>C
4. A—>B,B—- A A< B

J. Determine whether each argument is valid or invalid, using a
complete truth table.

1. AV[A— (Ao 4)] . 4

2. AVB,BVC,-B..ANC
3. A—> B,-A.. -B

4 A, B .. =(4— -B)

5 (AAB),AVB, A B..C

K. Answer each of the questions below and justify your answer.

1. Suppose that o/ and % are logically equivalent. What can
you say about o < 9B?

2. Suppose that (o A B) — 6 is neither a tautology nor a
contradiction. What can you say about whether d,% .. 6
is valid?
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3. Suppose that 9, B and € are jointly unsatisfiable. What
can you say about (4 A B A 6)?

4. Suppose that ¢ is a contradiction. What can you say about
whether 4,9 £ 6?

5. Suppose that € is a tautology. What can you say about
whether 4,9 £ 6?

6. Suppose that o and A are logically equivalent. What can
you say about (o v %)?

7. Suppose that d and 9B are not logically equivalent. What
can you say about (4 V &)?

L. Consider the following principle:

Suppose o and 9B are logically equivalent. Suppose
an argument contains  (either as a premise, or as
the conclusion). The validity of the argument would
be unaffected, if we replaced o with %.

Is this principle correct? Explain your answer.



Limitations of
1FL

We have reached an important milestone: a test for the validity
of arguments! However, we should not get carried away just yet.
It is important to understand the /imits of our achievement. We
will illustrate these limits with four examples.

First, consider the argument:

Daisy has four legs.
.. Daisy has more than two legs.

To symbolize this argument in TFL, we would have to use two
different sentence letters—perhaps ‘F” and ‘7’—for the premise
and the conclusion respectively. Now, it is obvious that ‘F” does
not entail ‘7”. But the English argument is surely valid!

Second, consider the sentence:

1. Jan is neither bald nor not bald.

To symbolize this sentence in TFL, we would offer something like

‘= J A== ). This a contradiction (check this with a truth-table),

but sentence 1 does not itself seem like a contradiction: we might

have happily added Jan is on the borderline of baldness’!
Third, consider the following sentence:

94
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2. It’s not the case that, if God exists, She answers malevolent
prayers.

Symbolizing this in TFL, we would offer something like ‘-(G —
M)’. Now, ‘=(G — M)’ entails ‘G’ (again, check this with a truth
table). So if we symbolize sentence 2 in TFL, it seems to entail
that God exists. But that’s strange: surely even an atheist can
accept sentence 2, without contradicting herself!

One lesson of this is that the symbolization of sentence 2 as
‘=(G — M)’ does not express what we intend. Perhaps we should
rephrase sentence 2 as

3. If God exists, She does not answer malevolent prayers.

and symbolize sentence 3 as ‘G — —M’. Now, if atheists are right,
and there is no God, then ‘G’ is false and so ‘G — =M’ is true,
and the puzzle disappears. However, if ‘G’ is false, ‘G — M,
i.e., ‘If God exists, She answers malevolent prayers’, is also true!

In different ways, these four examples highlight some of the
limits of TFL, symbolization of English in TFL, and the tests
based on truth tables we’ve devised. Our first example showed
that TFL is not expressive enough to symbolize everything we
might want to in a way that allows us to apply our logical toolkit
to even the best possible symbolization. We will see later (chap-
ter 26) that we can properly symbolize ‘Daisy has four legs’ in the
more expressive language FOL, and then the test we will devise
for FOL will apply (and give the correct answer).

In sentence 1 we similarly had an example where the straight-
forward symbolization in TFL does not quite work. The best we
can do in TFL is to symbolize ‘Jan is not bald’ using its own sen-
tence letter, say, ‘N’ (contrary to our standing practice). But this
also does not work. For instance, we would then symbolize ‘Jan
is both bald and isn’t’ as ‘/ A N’. But ‘Jan is both bald and isn’t’
arguably is a self-contradiction, yet the alternate symbolization
‘J/ A N’ is not. Some logicians have proposed that in cases of
sentences like Jan is bald’ which allow borderline cases, we have
to adjust our semantics and allow that the sentence letter ‘ / that
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symbolizes it should be allowed to take truth values other than T
and F. But this is by no means universally accepted.

Sentence 2 also showed that symbolization is often tricky,
and that the straightforward symbolization of an English sen-
tence sometimes does not capture its intended truth conditions.
But even our improvement, sentence 3, and its symbolization
‘G — - M’ turned out to not be good enough. The phenomenon
we encountered here is one of the so-called paradoxes of the
material conditional. The paradox is that material condition-
als like ‘G — M’ and ‘G — —-M’ are true whenever their an-
tecedent ‘G’ is false, even though intuitively the two sentences
‘If God exists, She answers malevolent prayers’ and ‘If God ex-
ists, She does not answer malevolent prayers’ should not both be
true. This indicates that the ‘if ...then’ in these two examples
is not properly captured by the TFL connective ‘=’. The truth-
functionality of TFL here is a real limitation. The solution would
be to treat ‘if ...then’ in this case as a subjunctive conditional
(see section 10.3), but TFL cannot capture those."

The case of Jan’s baldness (or otherwise) raises the general
question of what logic we should use when dealing with vague
discourse. The case of the atheist raises the question of how
to deal with the (so-called) paradoxes of the material conditional.
Part of the purpose of this book is to equip you with the tools
to explore these questions of philosophical logic. But we have to
walk before we can run; we have to become proficient in using
TFL, before we can adequately discuss its limits, and consider
alternatives.

'Logicians have devised logics that deal with subjunctive conditionals bet-
ter. They are called ‘conditional logics’ or ‘logics of counterfactuals’.



CHAPTER 14

Truth table
shortcuts

With practice, you will quickly become adept at filling out truth
tables. In this chapter, we consider (and justify) some shortcuts
which will help you along the way.

14.1  Working through truth tables

You will quickly find that you do not need to copy the truth value
of each sentence letter, but can simply refer back to them. So you
can speed things up by writing:

P Q| (@PvQ)o-P
T T T FF
T F T FF
F T T TT
F F F FT

You also know for sure that a disjunction is true whenever one
of the disjuncts is true. So if you find a true disjunct, there is no
need to work out the truth value of the other disjunct. Thus you
might offer:

97
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P Q‘(—!PV—!Q)V—'P
T T|F FF FF
T
F

F| F TT TF
T TT
F F TT

Equally, you know for sure that a conjunction is false whenever
one of the conjuncts is false. So if you find a false conjunct, there
is no need to work out the truth value of the other conjunct. Thus
you might offer:

Q |-~ (PA-Q)A-P
T FF
F FF
T| T F TT
F|T F TT

oo Y

A similar short cut is available for conditionals. You immediately
know that a conditional is true if either its consequent is true, or
its antecedent is false. Thus you might present:

P Q| (PoQ)—P)>P

T T T
T F T
F T T F T
F F T F T

So ‘((P — Q) — P) — P’ is a tautology. In fact, it is an instance
of Peirce’s Law, named after Charles Sanders Peirce.

14.2 Testing for validity and entailment

In chapter 12, we saw how to use truth tables to test for validity.
In that test, we look for bad lines: lines where the premises are
all true and the conclusion is false. Now:

> If the conclusion is true on a line, then that line is not bad.
(And we don’t need to evaluate anything else on that line
to confirm this.)
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> If any premise is false on a line, then that line is not bad.
(And we don’t need to evaluate anything else on that line
to confirm this.)

With this in mind, we can speed up our tests for validity quite
considerably.
Let’s consider how we might test the following:

~L—> (JVL),-L: ]

The first thing we should do is evaluate the conclusion. If we find
that the conclusion is #ruze on some line, then that is not a bad
line. So we can simply ignore the rest of the line. So, after our
first stage, we are left with something like this:

J L|-L>(vLD) | -L]|J
T T T
T F T
F T ? ? | F
F F ? | F

where the blanks indicate that we won’t bother with any more
investigation (since the line is not bad), and the question marks
indicate that we need to keep digging.

The easiest premise to evaluate is the second, so we do that
next, and get:

J L|-L->(vLD) | -L| ]
T T T
T F T
F T F | F
F F ? T |F

Note that we no longer need to consider the third line on the
table: it is certainly not bad, because some premise is false on
that line. And finally, we complete the truth table:
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J L|-L>(vLD | -L|J
T T T
T F T
F T F | F
F F|T F F |T |F

The truth table has no bad lines, so the argument is valid. Any
valuation which makes every premise true makes the conclusion
true.
It’s probably worth illustrating the tactic again. Consider this
argument:
AV B,~(BAC) .. (AV=0)

Again, we start by evaluating the conclusion. Since this is a dis-
junction, it is true whenever either disjunct is true, so we can
speed things along a bit.

A B C|AVB | =(BAC) | (AVv-0)
T T T T

T T F T

T F T T

T F F T

F T T ? ? FF
F T F TT
F F T ? ? FF
F F F TT

We can now ignore all but the two lines where the sentence after
the turnstile is false. Evaluating the two sentences on the left of
the turnstile, we get:
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A B C|AVB | ~(BAC)| (Av-0C)
T T T T

T T F T

T F T T

T F F T

F T T T F T FF
F T F TT
F F T F FF
F F F TT

So the entailment holds! And our shortcuts saved us a lof of
work.

We have been discussing shortcuts in testing for validity. But
exactly the same shortcuts can be used in testing for entailment.
By employing a similar notion of bad lines, you can save yourself
a huge amount of work.

Practice exercises

A. Using shortcuts, check whether each sentence is a tautology,
a contradiction, or neither.

-BAB

-Dv D

(AANB)V (BAA)

-[4 — (B — A)]

A< [A— (BA-B)]
-(AAB) < A4

A— (Bv Q)

(AN —=A) > (BVC)
(BAD) & [Ae (AV C)]

© ON ST o
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Partial truth
tables

Sometimes, we do not need to know what happens on every line
of a truth table. Sometimes, just a line or two will do.

Tautology. In order to show that a sentence is a tautology, we
need to show that it is true on every valuation. That is to say,
we need to know that it comes out true on every line of the truth
table. So we need a complete truth table.

To show that a sentence is not a tautology, however, we only
need one line: a line on which the sentence is false. Therefore, in
order to show that some sentence is not a tautology, it is enough
to provide a single valuation—a single line of the truth table—
which makes the sentence false.

Suppose that we want to show that the sentence ‘(U A T) —
(S A W)’ is not a tautology. We set up a PARTIAL TRUTH TABLE:

S T U W|UAT)>(SAW)
| F

We have only left space for one line, rather than 16, since we are
only looking for one line, on which the sentence is false (hence,
also, the ‘F’).
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The main logical operator of the sentence is a conditional. In
order for the conditional to be false, the antecedent must be true
and the consequent must be false. So we fill these in on the table:

S T U W] UAT)>(SAW)
| T F F

In order for the ‘(U A T)’ to be true, both ‘U’ and ‘7’ must be
true.
S T U W|WUAT)>(SAW)
T T | TTTF F

Now we just need to make ‘(S A W)’ false. To do this, we need to
make at least one of ‘S’ and ‘W’ false. We can make both ‘S’ and
‘W’ false if we want. All that matters is that the whole sentence
turns out false on this line. Making an arbitrary decision, we
finish the table in this way:

S T U W] UAT)>(SAW)
F T T F|TTTFFFF

We now have a partial truth table, which shows that ‘(U A T) —
(S A W)’ is not a tautology. Put otherwise, we have shown that
there is a valuation which makes ‘(U A T) — (§ A W)’ false,
namely, the valuation which makes ‘S’ false, ‘7" true, ‘U’ true
and ‘W’ false.

Contradictions. Showing that something is a contradiction in
TFL requires a complete truth table: we need to show that there
is no valuation which makes the sentence true; that is, we need
to show that the sentence is false on every line of the truth table.

However, to show that something is not a contradiction, all
we need to do is find a valuation which makes the sentence true,
and a single line of a truth table will suffice. We can illustrate this
with the same example.

S T U W|WUAT)>(SAW)
| T
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To make the sentence true, it will suffice to ensure that the an-
tecedent is false. Since the antecedent is a conjunction, we can
just make one of them false. Making an arbitrary choice, let’s
make ‘U’ false; we can then assign any truth value we like to the
other sentence letters.

S T U W|WUAT)>(SAW)
F T F F|FFTTFFF

Equivalence. To show that two sentences are equivalent, we
must show that the sentences have the same truth value on every
valuation. So this requires a complete truth table.

To show that two sentences are no¢ equivalent, we only need
to show that there is a valuation on which they have different
truth values. So this requires only a one-line partial truth table:
make the table so that one sentence is true and the other false.

Joint satisfiability. To show that some sentences are jointly
satisfiable, we must show that there is a valuation which makes
all of the sentences true, so this requires only a partial truth table
with a single line.

To show that some sentences are jointly unsatisfiable, we must
show that there is no valuation which makes all of the sentence
true. So this requires a complete truth table: You must show that
on every row of the table at least one of the sentences is false.

Validity and entailment. To show that an argument is valid,
we must show that there is no valuation which makes all of the
premises true and the conclusion false. So this requires a com-
plete truth table. (Likewise for entailment.)

To show that an argument is invalid, we must show that there
is a valuation which makes all of the premises true and the con-
clusion false. So this requires only a one-line partial truth table
on which all of the premises are true and the conclusion is false.
(Likewise for a failure of entailment.)

This table summarizes what is required:
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Yes No
tautology? complete one-line partial
contradiction? complete one-line partial
equivalent? complete one-line partial
satisfiable? one-line partial complete
valid? complete one-line partial
entailment? complete one-line partial

Practice exercises

105

A. Use complete or partial truth tables (as appropriate) to de-
termine whether these pairs of sentences are logically equivalent:

A, -4
A, AV A
A—> A A A

AV -B,A— B
AAN-A,-B < B
-(AAB),-AV -B
—|(A—>B), -A — —B
(4 — B), (=B — —4)

SRS Al e

B. Use complete or partial truth tables (as appropriate) to de-
termine whether these sentences are jointly satisfiable, or jointly

unsatisfiable:

AANB,C — =B, C
A—B,B—C, A, -C
AVB,BvC,C— -4

A, B, C,-D,-E, F
AN(BVC),=(AANC),=(BAC)
A— B,B— C,—(4— C)

S ® b

C. Use complete or partial truth tables (as appropriate) to de-

termine whether each argument is valid or invalid:

1. AV[A—> (Ao )] . 4



CHAPTER 15. PARTIAL TRUTH TABLES 106

2. Ao =(Be A) .. A

3. 4A— B,B.. A

4. AVB,BVC,-B.. ANC
5 AoB B (C. .. A<C

D. Determine whether each sentence is a tautology, a contradic-
tion, or a contingent sentence. Justify your answer with a com-
plete or partial truth table as appropriate.

A— -4

A— (AN (AV B))

(A— B) & (B— A)

A— —~(AA(AV B))

-B — [(mA A A)V B]

-(AV B) & (=A A —=B)
[(AAB)AC] — B
-[(C v 4) v B]
[(AAB)A=(AAB)|AC
(AAB)] = [(AANC)V (BAD)]

L LN o »® b

=
e

E. Determine whether each sentence is a tautology, a contradic-
tion, or a contingent sentence. Justify your answer with a com-
plete or partial truth table as appropriate.

=(AV A)

(A— B)V (B — A)
[(4—B)—> 4] - 4
=[(4—> B)V (B — A)]
(ANB)V (AV B)
-(AAB) > A

A— (BvC(C)
(An=-4) —> (BV(C)
(BAD) & [Ae (AV C)]

L O ST P K
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10. =[(4 — B) Vv (C — D)]

F. Determine whether each the following pairs of sentences are
logically equivalent using complete truth tables. Justify your an-
swer with a complete or partial truth table as appropriate.

Aand AV A

Aand AN A

AV -Band A — B

(4 — B) and (=B — —4)

-(AAB)and -4V —-B
(U—->XvX)VvU)and ~(X A (X AU))
((CA(N & C)) & C)and (-———N — CO)
[(AVB)AC]and [AV (B A C)]
((LAC)AI)and LV C

© PN

G. Determine whether each collection of sentences is jointly satis-
fiable or jointly unsatisfiable. Justify your answer with a complete
or partial truth table as appropriate.

A— A, -A— -A ANA, AV A
A—>—|A,—|A—>A

AVB,A— C,B—C
AvVB,A—C,B— C,-C
BA(CVA),A— B,~(BVC(C)

(A B)—>B,B—>—-(A4d< B),AVB
A (Bv(C),C——-4,A— -B
A~ B,-BVv—-4,A— B

A B, A— C,B— D,~(CVD)
-(AA-B), B— -4, =B

L XN ST ® P

-
©

H. Determine whether each argument is valid or invalid. Justify
your answer with a complete or partial truth table as appropriate.

1. A—> (AAN=-A) .. -4
2. AVB,A—>B,B—>A.. A< B
3. AV(B— A4)..-A— —-B
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1

P XN o

AVB,A—-B,B— A . ANB

(BANA) - C,(CANA) - B..(CAB)—> A4
-(mAV-B),A—-C..A— (B— ()
AN(B— C),-CA (=B —>—A4)..CA-C
AANB,-A—-~-C,B—>-D.. AVB

A—> B.. (AANB)V (=AA-B)

-4— B~-B—>C~C—>A.. -4A— (=BV-0)

I. Determine whether each argument is valid or invalid. Justify
your answer with a complete or partial truth table as appropriate.

ANl S

Ao ~(Beo A) .. A

AVB,BvC,-A..BAC

A—>C,E— (DVB),B—-D.. (AvC)VvV(B— (EAD))
AVB,C—>A4,C—->B..A— (B—-C()

A— B, -BVA.. A— B
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CHAPTER 16

The very idea
of natural
deduction

Way back in chapter 2, we said that an argument is valid iff there
is no case in which all of the premises are true and the conclusion
is false.

In the case of TFL, this led us to develop truth tables. Each
line of a complete truth table corresponds to a valuation. So,
when faced with a TFL argument, we have a very direct way to
assess whether there is a valuation on which the premises are true
and the conclusion is false: just thrash through the truth table.

However, truth tables may not give us much insight. Consider
two arguments in TFL:

Pv Q,—|P Q

P—-0,P. Q0
Clearly, these are valid arguments. You can confirm that they are
valid by constructing fourline truth tables, but we might say that

they make use of different forms of reasoning. It might be nice to
keep track of these different forms of inference.

110
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One aim of a natural deduction system is to show that particular
arguments are valid, in a way that allows us to understand the
reasoning that the arguments might involve. We begin with very
basic rules of inference. These rules can be combined to offer
more complicated arguments. Indeed, with just a small starter
pack of rules of inference, we hope to capture all valid arguments.

This is a very different way of thinking about arguments.

With truth tables, we directly consider different ways to make
sentences true or false. With natural deduction systems, we ma-
nipulate sentences in accordance with rules that we have set down
as good rules. The latter promises to give us a better insight—or
at least, a different insight—into how arguments work.

The move to natural deduction might be motivated by more
than the search for insight. It might also be motivated by necessity.
Consider:

41— (1
S (Ar A (dg A (A3 A (Ag A A5)))) —
((((C1V Cy) v C3) vV Cy) V Cs)

To test this argument for validity, you might use a 1,024-line truth
table. If you do it correctly, then you will see that there is no line
on which all the premises are true and on which the conclusion
is false. So you will know that the argument is valid. (But, as just
mentioned, there is a sense in which you will not know w#hy the
argument is valid.) But now consider:

4 - G
S(Ar A (Ag A (A3 A (Ag A (A5 A
(As A (A7 A (As A (Ag A 410))))))))) —
(((((((((CL vV C) vV C3) v Cy) V Cs5) v
Cs) Vv C7) vV Cg) V Co) V Cyo)

This argument is also valid—as you can probably tell—but to test
it requires a truth table with 220 = 1,048,576 lines. In principle,
we can set a machine to grind through truth tables and report
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back when it is finished. In practice, complicated arguments in
TFL can become intractable if we use truth tables.

When we get to first-order logic (FOL) (beginning in chap-
ter 23), though, the problem gets dramatically worse. There is
nothing like the truth table test for FOL. To assess whether or not
an argument is valid, we have to reason about a// interpretations,
but, as we will see, there are infinitely many possible interpreta-
tions. We cannot even in principle set a machine to grind through
infinitely many possible interpretations and report back when it
is finished: it will never finish. We either need to come up with
some more efficient way of reasoning about all interpretations, or
we need to look for something different.

There are, indeed, systems that codify ways to reason about
all possible interpretations. They were developed in the 1950s by
Evert Beth and Jaakko Hintikka, but we will not follow this path.
We will, instead, look to natural deduction.

Rather than reasoning directly about all valuations (in the
case of TFL), we will try to select a few basic rules of inference.
Some of these will govern the behaviour of the sentential con-
nectives. Others will govern the behaviour of the quantifiers and
identity that are the hallmarks of FOL. The resulting system of
rules will give us a new way to think about the validity of ar-
guments. The modern development of natural deduction dates
from simultaneous and unrelated papers by Gerhard Gentzen and
Stanistaw Jaskowski (1934). However, the natural deduction sys-
tem that we will consider is based largely around work by Frederic
Fitch (first published in 1952).



Basic rules for
TFL

We will develop a NATURAL DEDUCTION system. For each con-
nective, there will be INTRODUCTION rules, that allow us to prove
a sentence that has that connective as the main logical operator,
and ELIMINATION rules, that allow us to prove something given a
sentence that has that connective as the main logical operator.

17.1 The idea of a formal proof

A formal proof or derivation is a sequence of sentences, some of
which are marked as being initial assumptions (or premises). The
last line of the formal proof is the conclusion. (Henceforth, we
will simply call these ‘proofs’ or ‘derivations’, but be aware that
there are informal proofs too.)

As an illustration, consider:

-(AvV B)..—-AAN-B

We will start a proof by writing the premise:

1|-(4vB) PR
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Note that we have numbered the premise, since we will want to
refer back to it. Indeed, every line of the proof is numbered, so
that we can refer back to it.

Note also that we have drawn a line underneath the premise.
Everything written above the line is an assumption. Everything
written below the line will either be something which follows from
the assumptions, or it will be some new assumption. We are
hoping to conclude ‘-4 A =B’; so we are hoping ultimately to
conclude our proof with

n | ~AN-B

for some number n. It doesn’t matter what line number we end
on, but we would obviously prefer a short proof to a long one.
Similarly, suppose we wanted to consider:

AV B,-(AANC),~(BA=-D)..-CVD

The argument has three premises, so we start by writing them all
down, numbered, and drawing a line under them:

1|AVB PR

—(4AC) PR
=(B A-D) PR
and we are hoping to conclude with some line:

n ‘ﬁCVD

All that remains to do is to explain each of the rules that we can
use along the way from premises to conclusion. The rules are
broken down by our logical connectives.
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17.2 Reiteration

The very first rule is so breathtakingly obvious that it is surprising
we bother with it at all.

If you already have shown something in the course of a proof,
the reiteration rule allows you to repeat it on a new line. For
example:

4 |ANB

10 |AANB R, 4

This indicates that we have written ‘AA B’ on line 4. Now, at some
later line—line 10, for example—we have decided that we want
to repeat this. So we write it down again. We also add a citation
which justifies what we have written. In this case, we write ‘R’, to
indicate that we are using the reiteration rule, and we write ‘4’,
to indicate that we have applied it to line 4.

Here is a general expression of the rule:

m | A
A R,ym

The point is that, if any sentence 9 occurs on some line, then
we can repeat 9 on later lines. Each line of our proof must have
a justification, and here we have ‘R m’. This means: Reiteration,
applied to line m.

Two things need emphasizing. First ‘?’ is not a sentence of
TFL. Rather, it is a symbol in the metalanguage, which we use
when we want to talk about any sentence of TFL (see chapter 8).
Second, and similarly, ‘m’ is not a symbol that will appear on a
proof. Rather, it is a symbol in the metalanguage, which we use
when we want to talk about any line number of a proof. In an



CHAPTER 17. BASIC RULES FOR TFL 116

actual proof, the lines are numbered 1’, ‘2’, ‘3’, and so forth. But
when we define the rule, we use variables like ‘m’ to underscore
the point that the rule may be applied at any point.

17.3 Conjunction

Suppose we want to show that Ludwig is both reactionary and
libertarian. One obvious way to do this would be as follows: first
we show that Ludwig is reactionary; then we show that Ludwig
is libertarian; then we put these two demonstrations together, to
obtain the conjunction.

Our natural deduction system will capture this thought
straightforwardly. In the example given, we might adopt the fol-
lowing symbolization key:

R: Ludwig is reactionary
L: Ludwig is libertarian

Perhaps we are working through a proof, and we have obtained
‘R’ on line 8 and ‘L’ on line 15. Then on any subsequent line we
can obtain ‘R A L’ thus:

8 |R
15 | L
RAL ALS, 15

Note that every line of our proof must either be an assumption, or
must be justified by some rule. We cite ‘Al 8, 15’ here to indicate
that the line is obtained by the rule of conjunction introduction
(AI) applied to lines 8 and 15. We could equally well obtain:

8 R
15 | L
LAR AL 15,8
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with the citation reversed, to reflect the order of the conjuncts.
More generally, here is our conjunction introduction rule:

m | A
n | P

ANB AL m, n

Again, this statement of the rule is schematic. It is not itself
a proof. ‘d’ and ‘R’ are metavariables standing for arbitrary
sentence of TFL. Similarly, ‘m’ and ‘n’ are not letters that will
appear in any actual proof, but symbols we use to talk about any
line number of any proof. We use such metavariables to empha-
size that the rule may be applied at any point. The rule requires
only that we have both conjuncts available to us somewhere ear-
lier in the proof. They can be separated from one another, and
they can appear in any order.

The rule is called ‘conjunction introduction’ because it intro-
duces the symbol ‘A’ into our proof where it may have been ab-
sent. Correspondingly, we have a rule that eliminates that sym-
bol. Suppose you have shown that Ludwig is both reactionary
and libertarian. You are entitled to conclude that Ludwig is re-
actionary. Equally, you are entitled to conclude that Ludwig is
libertarian. Putting this together, we obtain our conjunction elim-
ination rule(s):

m | ANB
o/ AE, m

and equally:
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m | ANB
] AE, m

The point is simply that, when you have a conjunction on
some line of a proof, you can obtain either of the conjuncts by AE.
One point is worth emphasising: you can only apply this rule
when conjunction is the main logical operator. So you cannot
infer ‘D’ just from ‘C v (D A E)’!

Even with just these two rules, we can start to see some of the
power of our formal proof system. Consider:

[(AVB) > (CVD)]A[(EVF)— (GV H)]
L (EVF)-> (GVH)]A[(AVB) — (CvV D)

The main logical operator in both the premise and conclusion of
this argument is ‘A’. In order to provide a proof, we begin by
writing down the premise, which is our assumption. We draw a
line below this: everything after this line must follow from our
assumptions by (repeated applications of) our rules of inference.
So the beginning of the proof looks like this:

1 | [(AVB) - (CVD)|A[(EVF)— (GVH) PR

From the premise, we can get each of the conjuncts by AE. The
proof now looks like this:

1 |[(AVB)—>(CVD)]/\[(EVF)—>(GVH)] PR
2 | [(Av B) — (CV D)] AE, 1
3| [(EVF)—- (GVH) AE, 1

So by applying the Al rule to lines 3 and 2 (in that order), we
arrive at the desired conclusion. The finished proof looks like
this:
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1|[(AvB)—>(CVD)A[(EVF)— (GVvH)] PR

2 | [(Av B) — (CV D)] AE, 1
3| [(EVF)— (GV H)] AE, 1
4 | [(EVF)—> (GVH)]A[(AVB) - (CVvD)] ~aL3,2

This is a very simple proof, but it shows how we can chain rules
of proof together into longer proofs. In passing, note that investi-
gating this argument with a truth table would have required 256
lines; our formal proof required only four lines.

It is worth giving another example. Back in section 11.3, we
noted that this argument is valid:

ANBAC). . (AANB)AC

To provide a proof corresponding to this argument, we start by
writing:

1 | AA(BAC) PR

From the premise, we can get each of the conjuncts by apply-
ing AE twice. We can then apply AE twice more, so our proof
looks like:

1| AA(BAC) PR

2| 4 AE, 1
3 |BAC AE, 1
4 | B AE, 3
51|¢C AE, 3

But now we can merrily reintroduce conjunctions in the order we
wanted them, so that our final proof is:
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1 |AA(BAC) PR
214 AE, 1
3 | BAC AE, 1
4 | B AE, 3
5|C AE, 3
6 | ANB AL 2, 4
71 AANB)YAC ALG6,5

Recall that our official definition of sentences in TFL only allowed
conjunctions with two conjuncts. The proof just given suggests
that we could drop inner brackets in all of our proofs. However,
this is not standard, and we will not do this. Instead, we will
maintain our more austere bracketing conventions. (Though we
will still allow ourselves to drop outermost brackets, for legibility.)

Let’s give one final illustration. When using the Al rule, there
is no requirement to apply it to different sentences. So, if we
want, we can formally prove ‘4 A 4’ from ‘4’ thus:

1]4 PR
214r4 ALL1

Simple, but effective.

17.4 Conditional
Consider the following argument:

If Jane is smart then she is fast.
Jane is smart.
.. Jane is fast.
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This argument is certainly valid, and it suggests a straightforward
conditional elimination rule (—E):

m | dAd— B
n | d
9] —E, m, n

This rule is also sometimes called modus ponens. Again, this
is an elimination rule, because it allows us to obtain a sentence
that may not contain ‘=’, having started with a sentence that
did contain ‘=’. Note that the conditional s/ — 9 and the an-
tecedent o can be separated from one another in the proof, and
they can appear in any order. It is conventional to cite the line
number containing the conditional o — 9 first.

The rule for conditional introduction is also quite easy to
motivate. The following argument should be valid:

Ludwig is reactionary.
. If Ludwig is libertarian, then Ludwig is both reactionary
and libertarian.

If someone doubted that this was valid, we might try to convince
them otherwise by explaining ourselves as follows:

Assume that Ludwig is reactionary. Now, additionally
assume that Ludwig is libertarian. Then by conjunc-
tion introduction—which we just discussed—Ludwig
is both reactionary and libertarian. Of course, that’s
conditional on the assumption that Ludwig is libertar-
ian. But this just means that, if Ludwig is libertarian,
then he is both reactionary and libertarian.

Transferred into natural deduction format, here is the pattern
of reasoning that we just used. We started with one premise,
‘Ludwig is reactionary’, thus:
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1tE_PR

The next thing we did is to make an additional assumption (‘Lud-
wig is libertarian’), for the sake of argument. To indicate that we
are no longer dealing merely with our original premise (‘R’), but
with some additional assumption, we continue our proof as fol-
lows:

1|R PR

2 UL AS

Note that we are not claiming, on line 2, to have proved ‘L’ from
line 1, so we do not write in any justification for the additional
assumption on line 2. We do, however, need to mark that it is
an additional assumption. We do this by drawing a line under it
(to indicate that it is an assumption) and by indenting it with a
further vertical line (to indicate that it is additional).

With this extra assumption in place, we are in a position to
use Al So we can continue our proof:

1|R PR
2 L AS

3| |RAL ALL2

So we have now shown that, on the additional assumption, ‘L’,
we can obtain ‘R A L’. We can therefore conclude that, if ‘L’
obtains, then so does ‘R A L’. Or, to put it more briefly, we can
conclude ‘L —» (R AL)”:

1|R PR
9| 1z AS
3| |RAL AL 1, 2
4 |L>(RAL) —I 23
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Observe that we have dropped back to using one vertical line
on the left. We have discharged the additional assumption, ‘L’,
since the conditional itself follows just from our original assump-
tion, ‘R’.

The general pattern at work here is the following. We first
make an additional assumption, ¢; and from that additional as-
sumption, we prove 9. In that case, we know the following: If o
is true, then B is true. This is wrapped up in the rule for condi-
tional introduction:

i e AS
J B
d—-B -l iy

There can be as many or as few lines as you like between lines
i and j.

It will help to offer a second illustration of —I in action. Sup-
pose we want to consider the following:

P—-0Q,0—-R..P—>R

We start by listing both of our premises. Then, since we want
to arrive at a conditional (namely, ‘P — R’), we additionally
assume the antecedent to that conditional. Thus our main proof
starts:

1|P>Q PR
2|0Q—>R PR

3|iAs

Note that we have made ‘P’ available, by treating it as an addi-
tional assumption, but now, we can use —E on the first premise.
This will yield ‘Q’. We can then use —E on the second premise.



CHAPTER 17. BASIC RULES FOR TFL 124

So, by assuming ‘P’ we were able to prove ‘R’, so we apply the
—I rule—discharging ‘P’—and finish the proof. Putting all this
together, we have:

1|P>0Q PR
2 0—>R PR

3 P AS

4 0 —E, 1,3
5 R —E, 2,4
6 |P—>R —I 35

17.5 Additional assumptions and subproofs

The rule —I invoked the idea of making additional assumptions.
These need to be handled with some care. Consider this proof:

1|4 PR

9| | B AS

3 ’? R, 2

4 |B>B —5I,2-3

This is perfectly in keeping with the rules we have laid down
already, and it should not seem particularly strange. Since ‘B —
B’ is a tautology, no particular premises should be required to
prove it.

But suppose we now tried to continue the proof as follows:
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1|4 PR
AS

% | &

R, 2
— B -l 23

S I U
& &

naughty attempt

to invoke —E, 4, 3

If we were allowed to do this, it would be a disaster. It would
allow us to prove any sentence letter from any other sentence
letter. However, if you tell me that Anne is fast (symbolized by
‘A’), we shouldn’t be able to conclude that Queen Boudica stood
twenty-feet tall (symbolized by ‘B’)! We must be prohibited from
doing this, but how are we to implement the prohibition?

We can describe the process of making an additional assump-
tion as one of performing a subproof: a subsidiary proof within the
main proof. When we start a subproof, we draw another vertical
line to indicate that we are no longer in the main proof. Then we
write in the assumption upon which the subproof will be based.
A subproof can be thought of as essentially posing this question:
what could we show, if we also make this additional assumption?

When we are working within the subproof, we can refer to the
additional assumption that we made in introducing the subproof,
and to anything that we obtained from our original assumptions.
(After all, those original assumptions are still in effect.) At some
point though, we will want to stop working with the additional
assumption: we will want to return from the subproof to the main
proof. To indicate that we have returned to the main proof, the
vertical line for the subproof comes to an end. At this point,
we say that the subproof is cLOSED. Having closed a subproof,
we have set aside the additional assumption, so it will be illegit-
imate to draw upon anything that depends upon that additional
assumption. Thus we stipulate:
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To cite an individual line when applying a rule:

1. the line must come before the line where the rule is
applied, but

2. not occur within a subproof that has been closed
before the line where the rule is applied.

This stipulation rules out the disastrous attempted proof
above. The application of rule —E on line 5 requires that we
cite two individual lines from earlier in the proof. One of these
lines (namely, line 3) occurs within a subproof (lines 2-3). By
line 5, where we have to cite line 3, the subproof has been closed.
This is illegitimate: we are not allowed to cite line 3 on line 5.

Closing a subproof is called DISCHARGING the assumptions of
that subproof. So we can put the point this way: you cannot refer
back to anything that was obtained using a discharged assumption.

Subproofs, then, allow us to think about what we could show,
if we made additional assumptions. The point to take away from
this is not surprising—in the course of a proof, we have to keep
very careful track of what assumptions we are making, at any
given moment. Our proof system does this very graphically. (In-
deed, that’s precisely why we have chosen to use this proof sys-
tem.)

Once we have started thinking about what we can show by
making additional assumptions, nothing stops us from posing
the question of what we could show if we were to make even more
assumptions? This might motivate us to introduce a subproof
within a subproof. Here is an example using only the rules which
we have considered so far:
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1|4 PR
2 _B AS
3 _C AS
4 ANB AL 1,2
5 C — (AAB) —I, 3-4
6 | B> (C—->(A4AB) -l 2-5

Notice that the citation on line 4 refers back to the initial assump-
tion (on line 1) and an assumption of a subproof (on line 2).
This is perfectly in order, since neither assumption has been dis-
charged at the time (i.e., by line 4).

Again, though, we need to keep careful track of what we are
assuming at any given moment. Suppose we tried to continue the
proof as follows:

14 PR

2 _B AS

3 _C AS

4 ANB AL 1,2

5 C —> (AAB) -1, 3—4

6 | B> (C—->(AAB) -l 2-5
7|C—(AAB) naughty attempt

to invoke —I, 3—4

This would be awful. If we tell you that Anne is smart, you should
not be able to infer that, if Cath is smart (symbolized by ‘C’) then
both Anne is smart and Queen Boudica stood 2o feet tall! But this
is just what such a proof would suggest, if it were permissible.
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The essential problem is that the subproof that began with
the assumption ‘C’ depended crucially on the fact that we had
assumed ‘B’ on line 2. By line 6, we have discharged the assump-
tion ‘B’: we have stopped asking ourselves what we could show,
if we also assumed ‘B’. So it is simply cheating, to try to help
ourselves (on line 7) to the subproof that began with the assump-
tion ‘C’. Thus we stipulate, much as before, that a subproof can
only be cited on a line if it does not occur within some other
subproof which is already closed at that line. The attempted dis-
astrous proof violates this stipulation. The subproof of lines 3—4
occurs within a subproof that ends on line 5. So it cannot be
invoked on line 7.

Here is one further case we have to exclude:

1|4 PR

2 _B AS

3 _C' AS

4 BAC AL 23

5 c AE, 4

6 |B—>C naughty attempt
to invoke —I, 2-5

Here we are trying to cite a subproof that begins on line 2 and
ends on line 5—but the sentence on line 5 depends not only on
the assumption on line 2, but also on one another assumption
(line 3) which we have not discharged at the end of the subproof.
The subproof started on line 3 is still open at line 5. But —I re-
quires that the last line of the subproof only relies on the assump-
tion of the subproof being cited, i.e., the subproof beginning on
line 2 (and anything before it), and not on assumptions of any
subproofs within it. In particular, the last line of the subproof
cited must not itself lie within a nested subproof.
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To cite a subproof when applying a rule:

1. the cited subproof must come entirely before the ap-
plication of the rule where it is cited,

2. the cited subproof must not lie within some other
closed subproof which is closed at the line it is cited,
and

3. the last line of the cited subproof must not occur
inside a nested subproof.

One last point to emphasize how rules can be applied: where
a rule requires you to cite an individual line, you cannot cite a
subproof instead; and where it requires you to cite a subproof,
you cannot cite an individual line instead. So for instance, this is

incorrect:

1|4 PR

2 _B AS

3 _C AS

4 BAC AL 2,3

5 C AE, 4

6 C naughty attempt
to invoke R, 3-5

7| B—>C —I, 2-6

Here, we have tried to justify C on line 6 by the reiteration rule,
but we have cited the subproof on lines 3-5 with it. That subproof
is closed and can in principle be cited on line 6. (For instance, we
could use it to justify C — C by —I1.) But the reiteration rule R re-
quires you to cite an individual line, so citing the entire subproof
is inadmissible (even if that subproof contains the sentence C we
want to reiterate). Citing the individual lines containing C (3 or
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5) on line 6 is of course also inadmissible, since these lie in a
subproof closed before line 6.

It is always permissible to open a subproof with any assump-
tion. However, there is some strategy involved in picking a useful
assumption. Starting a subproof with an arbitrary, wacky assump-
tion would just waste lines of the proof. In order to obtain a con-
ditional by —I, for instance, you must assume the antecedent of
the conditional in a subproof.

Equally, it is always permissible to close a subproof (and dis-
charge its assumptions). However, it will not be helpful to do
so until you have reached something useful. Once the subproof
is closed, you can only cite the entire subproof in any justifica-
tion. Those rules that call for a subproof or subproofs, in turn,
require that the last line of the subproof is a sentence of some
form or other. For instance, you are only allowed to cite a sub-
proof for —T if the line you are justifying is of the form o — 9,
d is the assumption of your subproof, and & is the last line of
your subproof.

17.6 Biconditional

The rules for the biconditional will be like double-barrelled ver-
sions of the rules for the conditional.

In order to prove ‘F < G’, for instance, you must be able to
prove ‘G’ on the assumption ‘F’ and prove ‘F’ on the assump-
tion ‘G’. The biconditional introduction rule («I) therefore re-
quires two subproofs. Schematically, the rule works like this:
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i d AS
1RES
k B AS
2

de B ol i-j, k-l

There can be as many lines as you like between i and j, and as
many lines as you like between £ and /. Moreover, the subproofs
can come in any order, and the second subproof does not need
to come immediately after the first.

The biconditional elimination rule («<E) lets you do a bit
more than the conditional rule. If you have the left-hand subsen-
tence of the biconditional, you can obtain the right-hand subsen-
tence. If you have the right-hand subsentence, you can obtain the
left-hand subsentence. So we allow:

m | A B
n | A
9] —E, m, n

and equally:

m|d B
n | B
A —E, m, n

Note that the biconditional, and the right or left half, can be
separated from one another, and they can appear in any order.
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However, in the citation for <E, it is good practice to cite the
biconditional first.

17.7 Disjunction

Suppose Ludwig is reactionary. Then Ludwig is either reac-
tionary or libertarian. After all, to say that Ludwig is either reac-
tionary or libertarian is to say something weaker than to say that
Ludwig is reactionary.

Let’s emphasize this point. Suppose Ludwig is reactionary. It
follows that Ludwig is either reactionary or a kumquat. Equally,
it follows that either Ludwig is reactionary or kumquats are the
only fruit. Equally, it follows that either Ludwig is reactionary or
God is dead. Many of these are strange inferences to draw, but
there is nothing logically wrong with them (even if they maybe
violate all sorts of implicit conversational norms).

Armed with all this, we present the disjunction introduction
rule(s):

m | A

AVAB VL[ m
and
m | A

Bvd VL m

Notice that 98 can be any sentence whatsoever, so the follow-
ing is a perfectly acceptable proof:

1| M PR
2 | MV ([(Ao B) > (CAD)] o [EAF]) VL1
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Using a truth table to show this would have taken 128 lines.

The disjunction elimination rule is slightly trickier. Suppose
that either Ludwig is reactionary or he is libertarian. What can
you conclude? Not that Ludwig is reactionary; it might be that he
is libertarian instead. Equally, not that Ludwig is libertarian; for
he might merely be reactionary. Disjunctions, just by themselves,
are hard to work with.

But suppose that we could somehow show both of the fol-
lowing: first, that Ludwig’s being reactionary entails that he is
an Austrian economist; second, that Ludwig’s being libertarian
entails that he is an Austrian economist. Then if we know that
Ludwig is either reactionary or libertarian, then we know that,
whichever he is, Ludwig is an Austrian economist. This insight
can be expressed in the following rule, which is our disjunction
elimination (VE) rule:

m | AV
i d AS
ille
k B AS
L e
6 VE, m, i—j, k-l

This is obviously a bit clunkier to write down than our previ-
ous rules, but the point is fairly simple. Suppose we have some
disjunction, 9 vV 9RB. Suppose we have two subproofs, showing us
that ‘6 follows from the assumption that ¢/, and that € follows
from the assumption that %. Then we can infer € itself. As
usual, there can be as many lines as you like between i and j,
and as many lines as you like between £ and /. Moreover, the
subproofs and the disjunction can come in any order, and do not
have to be adjacent.
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Some examples might help illustrate this. Consider this argu-
ment:

(PANQ)V(PAR)..P

An example proof might run thus:

1 | (PAQ)V(PAR) PR

2 PAQ AS

3 P AE, 2

4 PAR AS

5 P AE, 4

6 | P VE, 1, 2-3, 4-5

Here is a slightly harder example. Consider:
ANBVC) . (AANB)V(AAC)

Here is a proof corresponding to this argument:

1 |[AA(BVO) PR

2 |4 AE, 1

3 BvC(C AE, 1

4 B AS

5 A B AL 2, 4

6 (AANB)vV(AANC) VL5

7 C AS

8 7/\ c AL 2,7

9 AANB)vV(AAC) VI8

10 | (AAB)V(AACQC) VE, 3, 4-6, 7-9
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Don’t be alarmed if you think that you wouldn’t have been able
to come up with this proof yourself. The ability to come up with
novel proofs comes with practice, and we’ll cover some strategies
for finding proofs in chapter 18. The key question at this stage is
whether, looking at the proof, you can see that it conforms to the
rules that we have laid down. That just involves checking every
line, and making sure that it is justified in accordance with the
rules we have laid down.

17.8 Contradiction and negation

We have only one connective left to deal with: negation. But to
tackle it, we must connect negation with contradiction.

An effective form of argument is to argue your opponent into
contradicting themselves. At that point, you have them on the
ropes. They have to give up at least one of their assumptions.
We are going to make use of this idea in our proof system, by
adding a new symbol, ‘L’, to our proofs. This should be read
as something like ‘contradiction!’ or ‘reductio!” or ‘but that’s ab-
surd!” The rule for introducing this symbol is that we can use
it whenever we explicitly contradict ourselves, i.e., whenever we
find both a sentence and its negation appearing in our proof:

m -
n | A4
€L -E, m, n
\

It does not matter what order the sentence and its negation
appear in, and they do not need to appear on adjacent lines. It is
conventional to cite the line number of the negation first, followed
by that of the sentence it is a negation of.

There is obviously a tight link between contradiction and
negation. The rule —E lets us proceed from two contradictory
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sentences—d and its negation —s9l—to an explicit contradic-
tion L. We choose the label for a reason: it is the most basic
rule that lets us proceed from a premise containing a negation,
i.e., -d, to a sentence not containing it, i.e.,, L. So it is a rule
that eliminates —.

We have said that ‘1L’ should be read as something like ‘con-
tradiction!” but this does not tell us much about the symbol.
There are, roughly, three ways to approach the symbol.

1. We might regard ‘1’ as a new atomic sentence of TFL, but
one which can only ever have the truth value False.

2. We might regard ‘L’ as an abbreviation for some canonical
contradiction, such as ‘4 A =A4’. This will have the same
effect as the above—obviously, ‘4 A =4’ only ever has the
truth value False—but it means that, officially, we do not
need to add a new symbol to TFL.

3. We might regard ‘L’, not as a symbol of TFL, but as some-
thing more like a punctuation mark that appears in our
proofs. (Itis on a par with the line numbers and the vertical
lines, say.)

There is something very philosophically attractive about the third
option, but here we will officially adopt the first. “1’ is to be read
as a sentence letter that is always false. This means that we can
manipulate it, in our proofs, just like any other sentence.

We still have to state a rule for negation introduction. The
rule is very simple: if assuming something leads you to a con-
tradiction, then the assumption must be wrong. This thought
motivates the following rule:

i a4 AS
J L

- AL i
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There can be as many lines between i and j as you like. To
see this in practice, and interacting with negation, consider this
proof:

1|D AS
2 -D AS
3 L -E 21

4 | --D I, 2-3

If the assumption that of is true leads to a contradiction, o
cannot be true, i.e., it must be false, i.e., =9/ must be true. Of
course, if the assumption that o is false (i.e., the assumption that
-9 is true) leads to a contradiction, then 9 cannot be false, i.e.,
o must be true. So we can consider the following rule:

i -4 AS
J L

o IP, i—j

This rule is called indirect proof, since it allows us to prove o
indirectly, by assuming its negation. Formally, the rule is very
similar to —I, but o and —gf have changed places. Since —d is
not the conclusion of the rule, we are not introducing —, so IP
is not a rule that introduces any connective. It also doesn’t elim-
inate a connective, since it has no free-standing premises which
contain -, only a subproof with an assumption of the form —d.
By contrast, —=E does have a premise of the form —d: that’s why
—-E eliminates —, but IP does not.*

!There are logicians who have qualms about IP, but not about —E. They are
called “intuitionists.” Intuitionists don’t buy our basic assumption that every
sentence has one of two truth values, true or false. They also think that —
works differently—for them, a proof of L from ¢ guarantees —d, but a proof
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Using —I, we were able to give a proof of == from <. Us-
ing IP, we can go the other direction (with essentially the same
proof).

1|--D PR

2 -D AS
3 L -E 1,2

4 | D IP, 2-3

We need one last rule. It is a kind of elimination rule for ‘1’,
and known as explosion.® If we obtain a contradiction, symbol-
ized by ‘L’, then we can infer whatever we like. How can this
be motivated, as a rule of argumentation? Well, consider the En-
glish rhetorical device “...and if ¢that’s true, I'll eat my hat’. Since
contradictions simply cannot be true, if one is true then not only
will I eat my hat, I’ll have it too. Here is the formal rule:

m | L

da X, m

Note that of can be any sentence whatsoever.

The explosion rule is a bit odd. It looks like o arrives in our
proof like a bunny out of a hat. When trying to find proofs, it
is very tempting to try to use it everywhere, since it seems so
powerful. Resist this temptation: you can only apply it when you
already have 1! And you get L only when your assumptions are
contradictory.

Still, isn’t it odd that from a contradiction anything whatso-
ever should follow? Not according to our notion of entailment

of L from —dl does not guarantee that o, but only ——d. So, for them, o and
——dl are not equivalent.

2The Latin name for this principle is ex contradictione quodlibet, “from con-
tradiction, anything.”
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and validity. For o entails & iff there is no valuation of the sen-
tence letters which makes o true and 9 false at the same time.
Now L is a contradiction—it is never true, whatever the valuation
of the sentence letters. Since there is no valuation which makes L
true, there of course is also no valuation that makes L true and
AR false! So according to our definition of entailment, 1 k A,
whatever & is. A contradiction entails anything.?
These are all of the basic rules for the proof system for TFL.

Practice exercises

A. The following two ‘proofs’ are incorrect. Explain the mistakes
they make.

1| (-LAA)VL PR

2| | -LA4 AS

3| |-L AE, 3

4] |4 AE, 1

50 |L AS

6| |1 -E, 3,5

71 |4 X, 6

8 | 4 VE, 1, 2-4, 5-7

3There are some logicians who don’t buy this. They think that if o entails
9B, there must be some relevant connection between 9 and 98—and there isn’t
one between L and some arbitrary sentence 9. So these logicians develop
other, “relevant” logics in which you aren’t allowed the explosion rule.
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1 |AABACQC) PR

2| (BvC)—D PR

3 | B AE, 1

4 | BvC vl 3
5D —E, 4,2

B. The following three proofs are missing their citations (rule
and line numbers). Add them, to turn them into bona fide proofs.
Additionally, write down the argument that corresponds to each
proof.

1|PAS 1 |-L—(JVL)
2|1 8S—>R 2 -L
3|P 3 | JVL
418 4 J

5| R 5 7/\]
6 | RVE 6 ]
1({4A—-D 7 i
2 AANB 8 +

3 A ) J

A D 10 | J

5 DVE

6 | (AAB) - (DVE)

C. Give a proof for each of the following arguments:

1.]—)—|J.'._|j
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L0 - (QA-Q) - 0

A—- (B—>C)..(AANB) > C
KANL. Ko L
(CAD)VE . EvVD
AoBBoC . A C
-F>G,F>H. . GVH
(ZAK)V(KAM),K - D..D
PA(QVR),P—>-R.QVE
SoT. . S (TVvS)

. =(P—>Q) .. -0
-(P—>Q)..P

P ®N v ¥

H R H
o



CHAPTER 18

Constructing

proofs

There is no simple recipe for finding proofs, and there is no sub-
stitute for practice. Here, though, are some rules of thumb and
strategies to keep in mind.

18.1 Working backward from what we want

So you’re trying to find a proof of some conclusion €, which
will be the last line of your proof. The first thing you do is look
at 6 and ask what the introduction rule is for its main logical
operator. This gives you an idea of what should happen before
the last line of the proof. The justifications for the introduction
rule require one or two other sentences above the last line, or
one or two subproofs. Moreover, you can tell from ‘€ what those
sentences are, or what the assumptions and conclusions of the
subproof(s) are. Then you can write down those sentence or
outline the subproof(s) above the last line, and treat those as
your new goals.

For example: If your conclusion is a conditional sf — 9, plan
to use the —I rule. This requires starting a subproof in which you
assume 9. The subproof ought to end with 9. Then, continue by

142
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thinking about what you should do to get % inside that subproof,
and how you can use the assumption .

If your goal is a conjunction, conditional, or negated sen-
tence, you should start by working backward in this way. We’ll
describe what you have to do in each of these cases in detail.

Working backward from a conjunction

If we want to prove d A B, working backward means we should
write A A 9B at the bottom of our proof, and try to prove it using
AL At the top, we’ll write out the premises of the proof, if there
are any. Then, at the bottom, we write the sentence we want to
prove. If it is a conjunction, we’ll prove it using Al

1 P PR

k Pr PR

n A

m %B

m+1 |AANB Al n,m

For Al, we need to prove o first, then prove 9. For the last line,
we have to cite the lines where we (will have) proved ¢ and 9, and
use AL The parts of the proof labelled by the vertical --- have
to still be filled in. We’ll mark the line numbers m, n for now.
When the proof is complete, these placeholders can be replaced
by actual numbers.
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Working backward from a conditional

If our goal is to prove a conditional o/ — %, we’ll have to use
—I. This requires a subproof starting with o and ending with 9.
We’ll set up our proof as follows:

m+1l |d—>B I, n-m

Again we’ll leave placeholders in the line number slots. We’ll
record the last inference as —I, citing the subproof.

Working backward from a negated sentence

If we want to prove —d, we’ll have to use —I.

m+1 -9 ﬂI, n—m

For —I, we have to start a subproof with assumption of; the last
line of the subproof has to be L. We’ll cite the subproof, and
use —I as the rule.

When working backward, continue to do so as long as you
can. So if you’re working backward to prove § — 9B and have
set up a subproof in which you want to prove %B. Now look at 3.
If, say, it is a conjunction, work backward from it, and write down
the two conjuncts inside your subproof. Etc.
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Working backward from a disjunction

Of course, you can also work backward from a disjunction 4 v 3,
if that is your goal. The VI rule requires that you have one of the
disjuncts in order to infer 4 v %. So to work backward, you pick
a disjunct, infer o V & from it, and then continue to look for a
proof of the disjunct you picked:

n A

n+l |AVAB VL n

However, you may not be able to prove the disjunct you picked.
In that case you have to backtrack. When you can’t fill in the part
labelled by the vertical -- -, delete everything, and try with the
other disjunct:

n B

n+l |AVAB VL n

Obviously, deleting everything and starting over is frustrating,
so you should avoid it. If your goal is a disjunction, therefore,
you should not start by working backward: try working forward
first, and apply the VI strategy only when working forward (and
working backward using AI, —I, and —-I) no longer work.

18.2 Working forward from what we have

Your proof may have premises. And if you’ve worked backward in
order to prove a conditional or a negated sentence, you will have
set up subproofs with an assumption, and be looking to prove a
final sentence in the subproof. These premises and assumptions
are sentences you can work forward from in order to fill in the
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missing steps in your proof. That means applying elimination
rules for the main operators of these sentences. The form of the
rules will tell you what you’ll have to do.

Working forward from a conjunction

To work forward from a sentence of the form o A 9B, we use AE.
That rule allows us to do two things: infer ¢, and infer 9. So in
a proof where we have 9 A 9B, we can work forward by writing o
and/or % immediately below the conjunction:

n ANB
n+1 | A AE, n
n+2 | B AE, n

Usually it will be clear in the particular situation you’re in which
one of 4 or & you’ll need. It doesn’t hurt, however, to write them
both down.

Working forward from a disjunction

Working forward from a disjunction works a bit differently. To
use a disjunction, we use the VE rule. In order to apply that rule,
it is not enough to know what the disjuncts of the disjunction are
that we want to use. We must also keep in mind what we want to
prove. Suppose we want to prove €, and we have ¢ V B to work
with. (That o/ vV B may be a premise of the proof, an assumption
of a subproof, or something already proved.) In order to be able
to apply the VE rule, we’ll have to set up two subproofs:



CHAPTER 18. CONSTRUCTING PROOFS 147

n AV PR

n+1 A

m 6

m+1 P

k ©

k+1 |6 VE, n, (n +1)-m, (m +1)-k

The first subproof starts with the first disjunct, 9, and ends with
the sentence we’re looking for, 6. The second subproof starts
with the other disjunct, 9%, and also ends with the goal sen-
tence 6. Each of these subproofs have to be filled in further.
We can then justify the goal sentence € by using VE, citing the
line with o v %8 and the two subproofs.

Working forward from a conditional

In order to use a conditional i — 9, you also need the an-
tecedent o in order to apply —E. So to work forward from a
conditional, you will derive %, justify it by —E, and set up o as
a new subgoal.

n A— B
m A
m+1 | B —E, n, m
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Working forward from a negated sentence

Finally, to use a negated sentence -9/, you would apply —E. It
requires, in addition to —d, also the corresponding sentence o
without the negation. The sentence you’ll get is always the same:
L. So working forward from a negated sentence works especially
well inside a subproof that you’ll want to use for =I (or IP). You
work forward from - if you already have =4 and you want to
prove L. To do it, you set up 4 as a new subgoal.

n -9
m A
m+1 | L -E, n, m

18.3 Strategies at work

Suppose we want to show that the argument (AAB)V (AAC) ..
AN (BV C) is valid. We start the proof by writing the premise
and conclusion down. (On a piece of paper, you would want as
much space as possible between them, so write the premises at
the top of the sheet and the conclusion at the bottom.)

1 |(A/\B)V(A/\C) PR

n|AAN(BVCQ)

We now have two options: either work backward from the con-
clusion, or work forward from the premise. We’ll pick the sec-
ond strategy: we use the disjunction on line 1, and set up the
subproofs we need for VE. The disjunction on line 1 has two dis-
juncts, 4 A B and 4 A C. The goal sentence you want to prove
is AN (B V C). So in this case you have to set up two subproofs,
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one with assumption 4 A B and last line 4 A (B V C), the other
with assumption 4 A C and last line AA (B V C). The justification
for the conclusion on line z will be VE, citing the disjunction on
line 1 and the two subproofs. So your proof now looks like this:

1 (AAB)V(AAC) PR

2 AANB AS

n AN(BVCO)

n+1 ANC AS

m AN (BVCO)

m+1 | AN(BVC) VE, 1, 2-n, (n + 1)-m

You now have two separate tasks, namely to fill in each of the two
subproofs. In the first subproof, we now work backward from the
conclusion 4 A (B V C). That is a conjunction, so inside the first
subproof, you will have two separate subgoals: proving 4, and
proving BV C. These subgoals will let you justify line z using Al
Your proof now looks like this:
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1 (AANB)v(AAC) PR
2 AANB AS
i A

n—1 Bv(C

n AAN(BVCQ) ALi,n—-1

n+1 ANC AS

m AAN(BVCQ)

m+1 | AAN(BVC) VE, 1, 2-n, (n + 1)-m

We immediately see that we can get line 7 from line 2 by AE. So
line 7 is actually line 3, and can be justified with AE from line 2.
The other subgoal BV C is a disjunction. We’ll apply the strategy
for working backward from a disjunctions to line » — 1. We have
a choice of which disjunct to pick as a subgoal, B or C. Picking
C wouldn’t work and wed end up having to backtrack. And you
can already see that if you pick B as a subgoal, you could get that
by working forward again from the conjunction 4 A B on line 2.
So we can complete the first subproof as follows:
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1 (AANB)v(AAC) PR

2 AANB AS

3 A AE, 2

4 B AE, 2

5 Bv<(C vI, 4

6 AN(BV Q) AL 3,5

7 ANC AS

m AAN(BVCQ)

m+1 | AAN(BVC) VE, 1, 2-6, 7-m

Like line 3, we get line 4 from 2 by AE. Line 5 is justified by VI
from line 4, since we were working backward from a disjunction
there.

That’s it for the first subproof. The second subproof is almost
exactly the same. We’ll leave it as an exercise.

Remember that when we started, we had the option of work-
ing forward from the premise, or working backward from the
conclusion, and we picked the first option. The second option
also leads to a proof, but it will look different. The first steps
would be to work backward from the conclusion and set up two
subgoals, 4 and B V C, and then work forward from the premise
to prove them, e.g.,



CHAPTER 18. CONSTRUCTING PROOFS 152

1 (AANB)v(AAC) PR

2 AANB AS

k A

k+1 ANC AS

n—1 A

n A VE, 1, 2-k, (k+1)—(n - 1)
n+1 AANB AS

l BvC

[+1 ANC AS

m—1 BvC

m BvC VE, 1, (n+ 1)L, ({ +1)-(m —1)
m+1 | AN(BVC(C) AL n, m

We’ll leave you to fill in the missing pieces indicated by :.

Let’s give another example to illustrate how to apply the
strategies to deal with conditionals and negation. The sentence
(A — B) = (nB — —4) is a tautology. Let’s see if we can find a
proof of it, from no premises, using the strategies. We first write
the sentence at the bottom of a sheet of paper. Since working for-
ward is not an option (there is nothing to work forward from), we
work backward, and set up a subproof to establish the sentence
we want, (4 — B) — (=B — —4), using —I. Its assumption
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must be the antecedent of the conditional we want to prove, i.e.,
A — B, and its last line the consequent, =B — —A4.

1 A— B AS
n -B — -4
n+l | (A—>B)—> (-B—>-4) -l 1-=n

The new goal, B — —4 is itself a conditional, so working back-
ward we set up another subproof:

1 A— B AS

2 AS

n—1

n —|B — —|A —)I, 2—(7], — 1)
n+l | (4—> B) > (=B—>-4) -l 1-n

From —4 we again work backward. To do this, look at the —I
rule. It requires a subproof with 4 as assumption, and L as its
last line. So the proof is now:
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1 A— B AS

2 -B AS

3

n—2

n—1 -A =L, 3—(n - 2)
n -B — -4 -1, 2-(n-1)

n+l | (A—>B)—> (-B—>-4) —-L1-=n

Now our goal is to prove L. We said above, when discussing how
to work forward from a negated sentence, that the —E rule allows
you to prove L, which is our goal in the innermost subproof. So
we look for a negated sentence which we can work forward from:
that would be —B on line 2. That means we have to derive B
inside the subproof, since —E requires not just ~B (which we have
already), but also B. And B, in turn, we get by working forward
from 4 — B, since —E will allow us to justify the consequent
of that conditional, B, by —E. The rule —E also requires the
antecedent 4 of the conditional, but that is also already available
(on line 3). So we finish with:



CHAPTER 18. CONSTRUCTING PROOFS 155

1 A— B
-B

A
B

4

-4

—|B—)—|A

(o =2 ©, B CUR (e}

(4 — B) = (=B = ~4)

AS
AS

—E, 1,3
~E, 2, 4
-1, 3-5

—I,2-6
-1, 1-7

18.4 Working forward from L

When applying the strategies, you will sometimes find yourself
in a situation where you can justify L. Using the explosion rule,
this would allow you to justify anything. So L works like a wild-
card in proofs. For instance, suppose you want to give a proof
of the argument AV B,—A4 .. B. You set up your proof, writing
the premises 4 V B and —4 at the top on lines 1 and 2, and the
conclusion B at the bottom of the page. B has no main connec-
tive, so you can’t work backward from it. Instead, you must work
forward from A4 v B: That requires two subproofs, like so:
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1 AvB PR

2 -4 PR

3 A AS

m B

m+1 AS

k B

k+1 | B VE, 1, 3-m, (m + 1)-k

Notice that you have -4 on line 2 and 4 as the assumption of
your first subproof. That gives you L using —E, and from L you
get the conclusion B of the first subproof using X. Recall that you
can repeat a sentence you already have by using the reiteration
rule R. So our proof would be:

AvB PR
-4 PR

AS
-E, 2,3
X, 4
AS

bu‘bu - |—‘m

R, 6

X N O v W N =

B VE, 1, 3-5, 6-7
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18.5 Proceed indirectly

In very many cases, the strategies of working forward and back-
ward will eventually pan out. But there are cases where they do
not work. If you cannot find a way to show d directly using those,
use IP instead. To do this, set up a subproof in which you assume
=9 and look for a proof of L inside that subproof.

m+1 | d 1P, n—-m

Here, we have to start a subproof with assumption —df; the last
line of the subproof has to be L. We’ll cite the subproof, and
use IP as the rule. In the subproof, we now have an additional
assumption (on line z) to work with.

Suppose we used the indirect proof strategy, or we’re in some
other situation where we’re looking for a proof of L. What’s a
good candidate? Of course the obvious candidate would be to use
a negated sentence, since (as we saw above) —E always yields L.
If you set up a proof as above, trying to prove ¢ using IP, you
will have —dl as the assumption of your subproof—so working
forward from it to justify L inside your subproof, you would next
set up 9 as a goal inside your subproof. If you are using this IP
strategy, you will find yourself in the following situation:

n A AS

m—1 oA

m L -E,n,m-1
m+1 | A 1P, n—m
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This looks weird: We wanted to prove d and the strategies failed
us; so we used IP as a last resort. And now we find ourselves in
the same situation: we are again looking for a proof of 4. But
notice that we are now inside a subproof, and in that subproof
we have an additional assumption (—s) to work with which we
didn’t have before. Let’s look at an example.

18.6 Indirect proof of excluded middle

The sentence AV—4 is a tautology called the law of excluded middle
(LEM), since it encapsulates the idea that 9 may be true or —o
may be true, but there is no middle way where neither is true."
It should have a proof even without any premises. But working
backward fails us: to get 4V =4 using VI we would have to prove
either 4 or —4A—again, from no premises. Neither of these is a
tautology, so we won’t be able to prove either. Working forward
doesn’t work either, since there is nothing to work forward from.
So, the only option is indirect proof.

1 -(Av-4) AS
m
m+1 | AV -4 1P, 1-m

Now we do have something to work forward from: the assumption
=(4 Vv —4). To use it, we justify L by —E, citing the assumption
on line 1, and also the corresponding unnegated sentence 4V -4,
yet to be proved.

“You may sometimes find logicians or philosophers talking about “tertium
non datur.” That’s the same principle as excluded middle; it means “no third
way.” Logicians who have qualms about indirect proof also have qualms about
LEM.
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1
m-—1
m
m+1

AV -4

1

AV -4

AS
-E,1,m-1
1P, 1-m

At the outset, working backward to prove 4 vV =4 by VI did not
work. But we are now in a different situation: we want to prove
AV -4 inside a subproof. In general, when dealing with new
goals we should go back and start with the basic strategies. In this
case, we should first try to work backward from the disjunction
AV -4, i.e., we have to pick a disjunct and try to prove it. Let’s
pick —A. This would let us justify 4V =4 on line m — 1 using VL.
Then working backward from —4, we start another subproof in
order to justify —A4 using —I. That subproof must have 4 as the
assumption and L as its last line.

1

2
m—3
m—2
m—1
m
m+1

AV -4

1

AV -4

=(AV =A4)

AS

AS

=1, 2—(m - 3)
v, m -2
-E,1,m-1
1P, 1-m

Inside this new subproof, we again need to justify L. The best way
to do this is to work forward from a negated sentence; (4 V —4)
on line 1 is the only negated sentence we can use. The corre-



CHAPTER 18. CONSTRUCTING PROOFS 160

sponding unnegated sentence, 4 V =4, however, directly follows
from A (which we have on line 2) by VI. Our complete proof is:

1] | ~(4v-4) AS

2 A AS

3 Av-4 VL2

4 i -E, 1, 3
5 -4 -1, 2-4

6 AV A vl, 5

7 L -E, 1,6
8 | Av -4 P, 1-7

Practice exercises

A. Use the strategies to find proofs for each of the following ar-
guments:

A—>BA—>C..A— (BAQ)
(AAB)->C..A—> (B—-0)

A—-> (B—-C)..(A—>B)—> (4-0)
AV (BAC). . (AVB)A(AV O)
(AANB)V(AAC). . AN(BVC(O)
AVB,A—-C,B—D. .. CvVvD
—-AV-B.. -(AAB)
AAN-B..-~(A— B)

S Sl

B. Formulate strategies for working backward and forward from
A < RB.

C. Use the strategies to find proofs for each of the following sen-
tences:

1. " A—> (A—> 1)
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el SO N

5.

[(A—> C)A(B—C)] = [(4V B) - (]
-(4— B) > (AA-B)
(=AV B) - (A — B)

Since these should be proofs of sentences from no premises, you
will start with the respective sentence at the bottom of the proof,
which will have no premises.

D. Use the strategies to find proofs for each one of the following
arguments and sentences:

. —A—> A
.mA—>-B..B—> A
.A—>B..-AV B

1
2
3
4
5
6
7

—(AAB) > (mAV -B)

. A—> (BVC)..(A—>B)Vv(4—- ()
. (A>B)V(B— A
.((4—>B)—>A4) — 4

These all will require the IP strategy. The last three especially
are quite hard!



CHAPTER 19

Additional
rules for TFL

In chapter 17, we introduced the basic rules of our proof system
for TFL. In this section, we will add some additional rules to our
system. Our extended proof system is a bit easier to work with.
(However, in chapter 21 we will see that they are not strictly
speaking necessary.)

19.1 Disjunctive syllogism
Here is a very natural argument form.

Elizabeth is either in Massachusetts or in DC.
She is not in DC.
.. She is in Massachusetts.

This is called disjunctive syllogism. We add it to our proof system
as follows:

162
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m | AV B
n -
] DS, m, n
and
m | AV B
n ﬁ%
oA DS, m, n

As usual, the disjunction and the negation of one disjunct
may occur in either order and need not be adjacent. However,
we always cite the disjunction first.

19.2 Modus tollens

Another useful pattern of inference is embodied in the following
argument:

If Hilary has won the election, then she is in the White
House.
She is not in the White House.

.. She has not won the election.

This inference pattern is called modus tollens. The corresponding
rule is:
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m|dA—RB
n ﬁ%
-9 MT, m, n

As usual, the premises may occur in either order, but we al-
ways cite the conditional first.

19.3 Double-negation elimination

Another useful rule is double-negation elimination. It does exactly
what it says on the tin:

m | -~

o/} DNE, m

The justification for this is that, in natural language, double-
negations tend to cancel out.

That said, you should be aware that context and emphasis can
prevent them from doing so. Consider: ‘Jane is not not happy’.
Arguably, one cannot infer ‘Jane is happy’, since the first sen-
tence should be understood as meaning the same as ‘Jane is not
unhappy’. This is compatible with ‘Jane is in a state of profound
indifference’. As usual, moving to TFL forces us to sacrifice cer-
tain nuances of English expressions.

19.4 Excluded middle

Suppose that we can show that if it’s sunny outside, then Bill will
have brought an umbrella (for fear of burning). Suppose we can
also show that, if it’s not sunny outside, then Bill will have brought
an umbrella (for fear of rain). Well, there is no third way for the
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weather to be. So, whatever the weather, Bill will have brought an
umbrella.

This line of thinking motivates the following rule:

i | |4  AS
ille
k| |- AS
| |®
B LEM, i—j, kI

The rule is sometimes called the rule of excluded middle. You
can think of it as VE applied to o/ vV —gl. There can be as many
lines as you like between i and j, and as many lines as you like
between k and /. Moreover, the subproofs can come in any order,

and the second subproof does not need to come immediately after
the first.

To see the rule in action, consider:
P .. (PAD)V (P A-D)

Here is a proof corresponding with the argument:
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1|P PR

2 _D AS

3 7/\ D AL 1,2

4 (PAD)v(PA=-D) VL3

5 =D AS

6 P A-D AL 1,5

7 (PAD)v(PA=-D) VL6

8 | (PAD)V (P A-D) LEM, 2-4, 5-7
Here is another example:

1|4—--4 PR

2 A AS

3 TA —E, 1,2

4 -4 AS

5 -4 R, 4

6 | -4 LEM, 2-3, 4-5

19.5 De Morgan Rules

Our final additional rules are called De Morgan’s Laws (named
after Augustus De Morgan). The shape of the rules should be

familiar from truth tables.

The first De Morgan rule is:
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m | =(AARB)
-4V B DeM, m

The second De Morgan is the reverse of the first:

m | -V -RB
-(AAB) DeM,m

The third De Morgan rule is the dual of the first:

m | =(AVRB)
A A =B DeM, m

And the fourth is the reverse of the third:

m | AN -B
-(dVvB) DeM,m

These are all of the additional rules of our proof system for TFL.

Practice exercises

A. The following proofs are missing their citations (rule and line

numbers). Add them wherever they are required:
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[

N - T L

® N ;e X

W — -B
ANW

BV (] ANK)

w
-B

JAK

L e =0

Lv -0

-L

-0

168
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3.

B. Give a proof for each of these arguments:

w00 IO M

1 Z — (C A=N)
2 -Z — (N A=C)
3 -(NvVvC)

4 -N A=C

5 -N

6 -C

7 Z

8 | | |ca-w

9 C

10 L

11 -Z

12 N A-C

13 N

14 L

15 | ==(N Vv C)

16 | NV C

.EVF,FVG,-F .  EANG

. MV(N—)M)ﬁM—>—|N
.MVN)YNOVP),N—->P,-P. . MAO
. XAY)VXANZ),-(XAD),DVM. .M
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CHAPTER 20

Proof-theoretic
concepts

In this chapter we will introduce some new vocabulary. The fol-
lowing expression:

di,dy,... . d, -6

means that there is some proof which ends with € whose undis-
charged assumptions are among d1,dy,...,9d,. When we want
to say that it is not the case that there is some proof which ends
with 6 from o1, dy, ..., d,, we write:

&11,&12,. . .,&ﬁn ¥ 6

The symbol ‘+’ is called the single turnstile. We want to em-
phasize that this is not the double turnstile symbol (‘¢’) that we
introduced in chapter 12 to symbolize entailment. The single
turnstile, ‘+’, concerns the existence of proofs; the double turn-
stile, ‘F’, concerns the existence of valuations (or interpretations,
when used for FOL). They are very different notions.

Armed with our ‘+’ symbol, we can introduce some more ter-
minology. To say that there is a proof of 9 with no undischarged
assumptions, we write: + of. In this case, we say that o is a
THEOREM.

170
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l o is a THEOREM iff + A

To illustrate this, suppose we want to show that ‘=(4 A =4)’
is a theorem. So we need a proof of ‘~(A4 A =4)’ which has no
undischarged assumptions. However, since we want to prove a
sentence whose main logical operator is a negation, we will want
to start with a subproof within which we assume ‘4 A -4’, and
show that this assumption leads to contradiction. All told, then,
the proof looks like this:

1 AN-A AS

2 A AE, 1

3 -4 AE, 1

4 L -E, 3, 2
5| =(AA=4) -1,1-4

We have therefore proved ‘~(4 A =4)’ on no (undischarged) as-
sumptions. This particular theorem is an instance of what is
sometimes called the law of non-contradiction.

To show that something is a theorem, you just have to find a
suitable proof. It is typically much harder to show that something
is not a theorem. To do this, you would have to demonstrate, not
just that certain proof strategies fail, but that no proof is possible.
Even if you fail in trying to prove a sentence in a thousand differ-
ent ways, perhaps the proof is just too long and complex for you
to make out. Perhaps you just didn’t try hard enough.

Here is another new bit of terminology:

Two sentences o and 9% are INTERDERIVABLE iff each can
be proved from the other; i.e., both o - 98 and % + 4.

As in the case of showing that a sentence is a theorem, it
is relatively easy to show that two sentences are interderivable:
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it just requires a pair of proofs. Showing that sentences are not
interderivable would be much harder: it is just as hard as showing
that a sentence is not a theorem.

Here is a third, related, bit of terminology:

The sentences sd1,99,...,9d, are JOINTLY INCONSISTENT
iff the contradiction L can be proved from them, i.e.,
di,dy,...,d, v L. If they are not INCONSISTENT, we call
them JOINTLY CONSISTENT.

It is easy to show that some sentences are inconsistent: you
just need to prove the contradiction L, assuming all the sentences
as premises. Showing that some sentences are nof inconsistent is
much harder. It would require more than just providing a proof
or two; it would require showing that no proof of a certain kind
is possible.

This table summarizes whether one or two proofs suffice, or
whether we must reason about all possible proofs.

Yes No
theorem? one proof all possible proofs
inconsistent? one proof all possible proofs
equivalent?  two proofs all possible proofs
consistent? all possible proofs one proof

Practice exercises

A. Show that each of the following sentences is a theorem:

1. 0 -0
2. NVv-N
3 JeolJVLA-L)]
4. (A—>B) - A) - A

B. Provide proofs to show each of the following:
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1. C>(EANG),-C—>GrG

2. MA(=RN - -M)+ (NAM)V-M

3. (ZAK)o> XY AM),DAN(D—->M)+Y > Z
4 WVX)VYVZ),X >Y,~ZrWVY

C. Show that each of the following pairs of sentences are inter-
derivable:

R E E<—R

G, ~——-G

T —8-§—>-T
U—1,-(UA\=I)
-(C - D),C A=D
-G o H,-(G o H)

S AL R

D. If you know that o +- 98, what can you say about (4 A6) + RB?
What about (4 V €) + B? Explain your answers.

E. In this chapter, we claimed that it is just as hard to show
that two sentences are not interderivable, as it is to show that
a sentence is not a theorem. Why did we claim this? (Hint:
think of a sentence that would be a theorem iff o/ and % were
interderivable.)
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Derived rules

In this section, we will see why we introduced the rules of our
proof system in two separate batches. In particular, we want
to show that the additional rules of chapter 19 are not strictly
speaking necessary, but can be derived from the basic rules of
chapter 17.

21.1 Derivation of Reiteration

To illustrate what it means to derive a rule from other rules, first
consider reiteration. It is a basic rule of our system, but it is also
not necessary. Suppose you have some sentence on some line of
your deduction:

m | A

You now want to repeat yourself, on some line £. You could just
invoke the rule R. But equally well, you can do this with other
basic rules of chapter 17:

m oA
k Arnd AL m,m
k+1 | o AE, k

174
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To be clear: this is not a proof. Rather, it is a proof scheme. After
all, it uses a variable, ‘of’, rather than a sentence of TFL, but the
point is simple: Whatever sentences of TFL we plugged in for
‘d’, and whatever lines we were working on, we could produce a
bona fide proof. So you can think of this as a recipe for producing
proofs.

Indeed, it is a recipe which shows us the following: anything
we can prove using the rule R, we can prove (with one more line)
using just the basic rules of chapter 17 without R. That is what it
means to say that the rule R can be derived from the other basic
rules: anything that can be justified using R can be justified using
only the other basic rules.

21.2 Derivation of Disjunctive Syllogism

Suppose that you are in a proof, and you have something of this
form:

m | AV A
n -

You now want, on line £, to prove 9. You can do this with the
rule of DS, introduced in chapter 19, but equally well, you can
do this with the basic rules of chapter 17:
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m dv R

n -d

k o AS

kE+1 T -E, n, k

k+2 9B X, k+1

k+3 B AS

k+4 g R, k+3

k+5 | R VE, m, k—k +2, k +3-k +4

So the DS rule, again, can be derived from our more basic rules.
Adding it to our system did not make any new proofs possible.
Anytime you use the DS rule, you could always take a few extra
lines and prove the same thing using only our basic rules. It is a
derived rule.

21.3 Derivation of Modus Tollens
Suppose you have the following in your proof:
m|d4—%RB
n | R

You now want, on line £, to prove —gf. You can do this with the
rule of MT, introduced in chapter 19. Equally well, you can do
this with the basic rules of chapter 17:
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m d—RB

n -RB

k o AS

k+1 B —E, m, k
k+2 L -E, n, k+1
k+3 | -d -1 k—k +2

Again, the rule of MT can be derived from the basic rules of
chapter 17.

21.4 Derivation of Double-Negation
Elimination

Consider the following deduction scheme:
m -

k -4 AS
E+1 1 -E, m, k

k+2 | oA IP, k—k +1

Again, we can derive the DNE rule from the basic rules of chap-
ter 17.

21.5 Derivation of Excluded Middle

Suppose you want to prove something using the LEM rule, i.e.,
you have in your proof
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m od AS

n B
k -4 AS

l B

You now want, on line / + 1, to prove 9. The rule LEM from
chapter 19 would allow you to do it. But can you do this with the

basic rules of chapter 17?
One option is to first prove 4 V —d, and then apply VE, i.e.,

proof by cases:

m oA AS

| |®

k - AS

l

i d v -d

i+1 | 9B VE, i, m—n, k-

(We gave a proof of o vV =gl using only our basic rules in sec-
tion 18.6.)

Here is another way that is a bit more complicated than the
ones before. What you have to do is embed your two subproofs
inside another subproof. The assumption of the subproof will be
-9, and the last line will be L. Thus, the complete subproof is
the kind you need to conclude % using IP. Inside the proof, youd
have to do a bit more work to get L:
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m -RB AS

m+1 d AS

n R

n+1 L -E, m, n

n+2 - AS

[ B

[+1 L -E, m, [

[+2 - I, (m+1)—(n+1)
[+3 e =L (n+2)-(l +1)
[+4 L -E, [+3,]+2
l+5 | R IP, m—(l + 4)

Note that because we add an assumption at the top and additional
conclusions inside the subproofs, the line numbers change. You
may have to stare at this for a while before you understand what’s
going on.

21.6 Derivation of De Morgan rules

Here is a demonstration of how we could derive the first De Mor-
gan rule:
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k
k+1
k+2
k+3
k+4
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—(d A B)
o AS
_973 AS
ANB ALk k+1
L -E, m, k+2
-8 =1 (K +1)—(k + 3)
—-AvV-B VL k+4
- AS
—Av-B VLE+6
-V -RB LEM, k—(k + 5), (kK + 6)—(k + 7)

Here is a demonstration of how we could derive the second De
Morgan rule:

m

k
k+1
k+2
k+3
k+4
k+5
k+6
k+7
k+8

-4V -RB
ANRB
a4
%
-d

1

-RB

1

—(d A B)

AS

AE, k

AE, k

AS

-E, k+3,k+1

AS

-E, k+5 k+2

VE, m, (k + 3)—(k +4), (k + 5)—(k + 6)
=1, k—(k +7)
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Similar demonstrations can be offered explaining how we could
derive the third and fourth De Morgan rules. These are left as
exercises.

Practice exercises

A. Provide proof schemes that justify the addition of the third
and fourth De Morgan rules as derived rules.

B. The proofs you offered in response to the practice exercises of
chapters 19 to 20 used derived rules. Replace the use of derived
rules, in such proofs, with only basic rules. You will find some
‘repetition’ in the resulting proofs; in such cases, offer a stream-
lined proof using only basic rules. (This will give you a sense,
both of the power of derived rules, and of how all the rules inter-
act.)

C. Give a proof of o vV —dl. Then give a proof that uses only the
basic rules.

D. Show that if you had LEM as a basic rule, you could justify
IP as a derived rule. That is, suppose you had the proof:

How could you use it to prove o without using IP but with using
LEM as well as all the other basic rules?

E. Give a proof of the first De Morgan rule, but using only the
basic rules, in particular, without using LEM. (Of course, you can
combine the proof using LEM with the proof of LEM. Try to find
a proof directly.)



CHAPTER 22

Soundness
and
completeness

In chapter 20, we saw that we could use derivations to test for
similar things we used truth tables to test for. Not only could show
that a conclusion is derivable from some premises, we could also
use them to test if a sentence is a theorem or a pair of sentences
are interderivable. We also started using the single turnstile the
same way we used the double turnstile. If we could prove that
o was a tautology using a truth table, we wrote £ ¢, and if we
could prove it using a derivation, we wrote I .

You may have wondered at that point if the two kinds of turn-
stiles always worked the same way. If you can show that o is a
tautology using truth tables, can you also always show that it is a
theorem using a derivation? Is the reverse true? Are these things
also true for valid arguments and pairs of equivalent sentences?
As it turns out, the answer to all these questions and many more
like them is yes. We can show this by proving that the concepts
based on truth tables and the corresponding concepts based on

182
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derivations are equivalent. That is, we show that, e.g., E o iff - o
for any sentence 9.

To begin with, we need to define all of our logical concepts
separately for truth tables and derivations. A lot of this work has
already been done. We handled all of the truth table definitions in
chapter 12. We have also already given proof-theoretic definitions
for theorems and pairs of interderivable sentences. The other
definitions follow naturally. For most logical properties we can
devise a test using derivations, and those that we cannot test
for directly can be defined in terms of the concepts that we can
define.

For instance, we defined a theorem as a sentence that can
be derived without any premises (p. 171). We can define an IN-
CONSISTENT SENTENCE IN TFL as a sentence from which we can
derive the contradiction ‘L’." The syntactic definition of a con-
tingent sentence is a little different. We don’t have any practi-
cal, finite method for proving that a sentence is contingent using
derivations, the way we did using truth tables. So we have to
content ourselves with defining “contingent sentence” negatively.
A sentence is PROOF-THEORETICALLY CONTINGENT IN TFL if it is
neither a theorem nor an inconsistent sentence.

A collection of sentences is INCONSISTENT IN TFL if and only
if one can derive the contradiction L from them. Consistency,
on the other hand, is like contingency, in that we do not have a
practical finite method to test for it directly. So again, we have to
define a term negatively. A collection of sentences is CONSISTENT
IN TFL if and only if it is not inconsistent.

Finally, an argument is PROVABLY VALID IN TFL if and only
if there is a derivation of its conclusion from its premises. All of
these definitions are given in table 22.1.

We now have matching pairs of concepts defined once se-
mantically (using valuations and truth tables) and once proof-
theoretically (on the basis of natural deduction). How can we
establish that these definitions always work the same way? A full

1Note that o + L iff =d is a theorem.
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proof here goes well beyond the scope of this book. However, we
can sketch what it would be like. We will focus on showing the two
notions of validity to be equivalent. From that the other concepts
will follow quickly. The proof will have to go in two directions.
First we will have to show that things which are proof-theoretically
valid will also be semantically valid. In other words, everything
that we can prove using derivations could also be proven using
truth tables. Put symbolically, we want to show that  implies k.
Afterwards, we will need to show things in the other directions,
E implies

This argument from F to F is the problem of SOUNDNESs. A
proof system is SOUND if there are no derivations of arguments
that can be shown invalid by truth tables. Demonstrating that
the proof system is sound would require showing that any pos-
sible proof is the proof of a valid argument. It would not be
enough simply to succeed when trying to prove many valid argu-
ments and to fail when trying to prove invalid ones. The proof
itself requires some care. In a nutshell, it involves showing that
every inference rule preserves the property that its conclusion is
entailed by the premises of the proof together with whatever as-
sumptions are open. You can find the details of this proof worked
out in chapter 48.

Soundness means that  + 9% implies 9 £ 9. What about
the other direction, that is, why think that every argument that
can be shown valid using truth tables can also be proven using a
derivation?

This is the problem of completeness. A proof system has the
property of COMPLETENESS if and only if there is a derivation of
every semantically valid argument. Proving that a system is com-
plete is generally harder than proving that it is sound. Proving
that a system is sound amounts to showing that all of the rules of
your proof system work the way they are supposed to. Showing
that a system is complete means showing that you have included
all the rules you need, that you haven’t left any out. Showing this
is beyond the scope of this book. The important point is that,
happily, the proof system for TFL is both sound and complete.
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This is not the case for all proof systems or all formal languages.
Because it is true of TFL, we can choose to give proofs or give
truth tables—whichever is easier for the task at hand.

Now that we know that the truth table method is interchange-
able with the method of derivations, you can chose which method
you want to use for any given problem. Students often prefer to
use truth tables, because they can be produced purely mechan-
ically, and that seems ‘easier’. However, we have already seen
that truth tables become impossibly large after just a few sen-
tence letters. On the other hand, there are a couple of situations
where using proofs simply isn’t possible. We syntactically defined
a contingent sentence as a sentence that couldn’t be proven to be
a tautology or a contradiction. There is no practical way to prove
this kind of negative statement. We will never know if there isn’t
some proof out there that a statement is a contradiction and we
just haven’t found it yet. We have nothing to do in this situation
but resort to truth tables. Similarly, we can use derivations to
prove two sentences equivalent, but what if we want to prove that
they are not equivalent” We have no way of proving that we will
never find the relevant proof. So we have to fall back on truth
tables again.

Table 22.2 summarizes when it is best to give proofs and when
it is best to give truth tables.

Practice exercises

A. Use either a derivation or a truth table for each of the follow-
ing.

Show that 4 — [((B A C) V D) — A] is a theorem.

Show that 4 — (4 — B) is not a theorem.

Show that the sentence 4 — —A4 is not a contradiction.
Show that the sentence 4 <> =4 is a contradiction.

Show that the sentence (W — (J V J)) is contingent.
Show that the sentence (X V(Y VZ)) V(X V(Y V Z)) is
not contingent.

ST ® e
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Logical
property

To prove it present

187

To prove it absent

Being a tautol-

Derive the sentence

Find a false line in the
truth table for the

ogy/theorem
sentence
. . Find at line in th
Being a Derive L from the mncatrue ine m the
T . truth table for the
contradiction sentence
sentence
Find a false line and a
. T Prove the sentence or
Contingency true line in the truth . .
its negation
table for the sentence
Find a line in the
Equivalence Derive each sentence truth tables for the
from the other sentence where they
have different values
Find a line in truth Deri " h
Consistency table for the sentence erive L from the
sentences
where they all are true
Find a line in the
- Derive the conclusion | truth table where the
Validity

from the premises

premises are true and
the conclusion false.

Table 22.2: When to provide a truth table and when to provide a proof-

7. Show that the sentence B — —§ is equivalent to the sen-
tence -—B — -§.
8. Show that the sentence —(X V 0) is not equivalent to the
sentence X A 0.
9. Show that the sentences —(4 Vv B), C, C — A are jointly

inconsistent.

10. Show that the sentences ~(4 V B), =B, B — A are jointly

consistent.

11. Show that =(A4AV (B V C)) ..=C is valid.
12. Show that =(4A A (B V C)) ..=C is invalid.
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B. Use either a derivation or a truth table for each of the follow-

ing.

© O oA ® b

- o
= o

=
[\

Show that 4 — (B — A) is a theorem.

Show that =(((N < Q) V Q) V N) is not a theorem.

Show that Z V (=Z < Z) is contingent.

Show that (L & ((N — N) — L)) V H is not contingent.
Show that (4 <> A) A (B A =B) is a contradiction.

Show that (B <> (C Vv B)) is not a contradiction.

Show that ((—=X < X) Vv X) is equivalent to X.

Show that F'A (K AR) is not equivalent to (F < (K < R)).
Show that the sentences -(W — W), (W & W) AW,
EV (W — —(E A W)) are jointly inconsistent.

Show that the sentences =R V C, (C AR) — =R, (=(RV
C) — R) are jointly consistent.

. Show that ~~(C < —C),((GV C)V G) .. (G — C) A G)

is valid.

. Show that ==L,(C — =L) — C) .. =C is invalid.
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CHAPTER 23

Building
blocks of FOL

23.1 The need to decompose sentences

Consider the following argument, which is obviously valid in En-
glish:

Willard is a logician.
All logicians wear funny hats.
". Willard wears a funny hat.

To symbolize it in TFL, we might offer a symbolization key:

L: Willard is a logician.
A: All logicians wear funny hats.
F: Willard wears a funny hat.

And the argument itself becomes:
LA F

But the truth-table test will now indicate that this is invalid. What
has gone wrong?

190
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The problem is not that we have made a mistake while sym-
bolizing the argument. This is the best symbolization we can
give in TFL. The problem lies with TFL itself. ‘All logicians wear
funny hats’ is about both logicians and hat-wearing. By not re-
taining this structure in our symbolization, we lose the connec-
tion between Willard’s being a logician and Willard’s wearing a
hat.

The basic units of TFL are sentence letters, and TFL cannot
decompose these. To symbolize arguments like the preceding
one, we will have to develop a new logical language which will
allow us to split the atom. We will call this the language of first-
order logic, or FOL."

The details of FOL will be explained throughout this chapter,
but here is the basic idea for splitting the atom.

First, we have names. In FOL, we indicate these with lowercase
italic letters. For instance, we might let ‘4’ stand for Bertie, or let
‘¢’ stand for Willard.

Second, we have predicates. English predicates are expres-
sions like is a dog’ or ¢ is a logician’. These are not
complete sentences by themselves. In order to make a complete
sentence, we need to fill in the gap. We need to say something
like ‘Bertie is a dog’ or ‘Willard is a logician’. In FOL, we in-
dicate predicates with uppercase italic letters. For instance, we
might let the FOL predicate ‘D’ symbolize the English predicate
¢ is a dog’. Then the expression ‘D(4)’ will be a sentence
in FOL, which symbolizes the English sentence ‘Bertie is a dog’.
Equally, we might let the FOL predicate ‘L’ symbolize the En-
glish predicate ¢ is a logician’. Then the expression ‘L(7)’
will symbolize the English sentence ‘Willard is a logician’.

Third, we have quantifiers. For instance, ‘3" will roughly con-
vey ‘There is at least one ... . So we might symbolize the English
sentence ‘there is a dog’ with the FOL sentence ‘3x D(x)’, which

'First-order logic is also often called (classical) “predicate” or “quantifica-
tional” logic.
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we might read aloud as ‘there is at least one thing, x, such that x
is a dog’.

That is the general idea, but FOL is significantly more subtle
than TFL, so we will come at it slowly.

23.2 Names

In English, a singular term is a word or phrase that is meant to
refer to a specific person, place, or thing. The word ‘dog’ is not
a singular term, because there are a great many dogs. The name
‘Bertie’ is a singular term, because it refers to a specific terrier.
Likewise, the phrase ‘Philip’s dog’ is a singular term, because it
also refers to a specific little terrier.

Proper names are a particularly important kind of singular
term. These are expressions that pick out individuals without
describing them. The name ‘Emerson’ is a proper name, and
the name alone does not tell you anything about Emerson. Of
course, some names are traditionally given to boys and others are
traditionally given to girls. If ‘Hilary’ is used as a singular term,
you might guess that it refers to a woman. You might, though, be
guessing wrongly. Indeed, the name does not necessarily mean
that the person referred to is even a person: Hilary might be a
giraffe, for all you could tell just from the name.

In FOL, our NAMES are lower-case letters ‘a’ through to ‘r’.
We can add subscripts if we want to use some letter more than
once. So here are some singular terms in FOL:

a,b,c,...,r,a1,f32, j390, mi2

These should be thought of along the lines of proper names in
English, but with one difference. ‘Tim Button’ is a proper name,
but there are several people with this name. We live with this
kind of ambiguity in English, allowing context to individuate the
fact that ‘Tim Button’ refers to an author of this book, and not
some other Tim. In FOL, we do not tolerate any such ambiguity.
Each name must pick out exactly one thing. However, just like
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in English, in FOL different names may pick out the same thing,

and there can be things that don’t have names picking them out.
As with TFL, we can provide symbolization keys. These indi-

cate, temporarily, what a name will pick out. So we might offer:

e: Elsa
g: Gregor
m: Marybeth

23.3 Predicates

The simplest predicates express properties of individuals. They
are things you can say about an object. Here are some examples
of English predicates:

> is a dog
> is a member of Monty Python
> A piano fell on

In general, you can think about predicates as things which com-
bine with singular terms to make sentences. Conversely, you can
start with sentences and make predicates out of them by remov-
ing terms. Consider the sentence, ‘Vinnie borrowed the family
car from Nunzio.” By removing a singular term, we can obtain
any of three different predicates:

> borrowed the family car from Nunzio
> Vinnie borrowed from Nunzio

> Vinnie borrowed the family car from

In FOL, PREDICATES are capital letters ‘4’ through ‘Z’, with or
without subscripts. We might write a symbolization key for pred-
icates thus:

A(x): x is angry
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H(x): x 1s happy

(Why the subscripts on the gaps? We will return to this in chap-
ter 25.)

If we combine our two symbolization keys, we can start to
symbolize some English sentences that use these names and pred-
icates in combination. For example, consider the English sen-
tences:

1. Elsa is angry.
2. Gregor and Marybeth are angry.
3. If Elsa is angry, then so are Gregor and Marybeth.

Sentence 1 is straightforward: we symbolize it by ‘A(e)’.
Sentence 2 is a conjunction of two simpler sentences. The
simple sentences can be symbolized just by ‘4(g)’ and ‘4(m)’.
Then we help ourselves to our resources from TFL, and symbolize
the entire sentence by ‘4(g) AA(m)’. This illustrates an important
point: FOL has all of the truth-functional connectives of TFL.
Sentence 3 is a conditional, whose antecedent is sentence 1
and whose consequent is sentence 2, so we can symbolize this

with ‘4(e) — (A(g) A A(m))’.

23.4 Quantifiers

We are now ready to introduce quantifiers. Consider these sen-
tences:

4. Everyone is happy.
5. Someone is angry.

It might be tempting to symbolize sentence 4 as ‘H(e) A H(g) A
H(m)’. Yet this would only say that Elsa, Gregor, and Marybeth
are happy. We want to say that everyone is happy, even those with
no names. In order to do this, we introduce the v’ symbol. This
is called the UNIVERSAL QUANTIFIER.
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A quantifier must always be followed by a vARIABLE. In FOL,
variables are italic lowercase letters ‘s’ through ‘z’, with or with-
out subscripts. So we might symbolize sentence 4 as ‘Vx H(x)’.
The variable ‘x’ is serving as a kind of placeholder. The ex-
pression ‘Vx’ intuitively means that you can pick anyone and put
them in as ‘x’. The subsequent ‘H (x)’ indicates, of that thing you
picked out, that it is happy.

It should be pointed out that there is no special reason to use
‘x’ rather than some other variable. The sentences ‘Vx H(x)’,
VyH(y), Yz H(z)’, and ‘Vx5 H (x5)’ use different variables, but
they will all be logically equivalent.

To symbolize sentence 5, we introduce another new symbol:
the EXISTENTIAL QUANTIFIER, ‘F. Like the universal quantifier,
the existential quantifier requires a variable. Sentence 5 can be
symbolized by ‘Ix 4(x)’. Whereas ‘Vx A(x)’ is read naturally as
‘for all x, x is angry’, ‘Ix A(x)’ is read naturally as ‘there is some-
thing, x, such that x is angry’. Once again, the variable is a kind
of placeholder; we could just as easily have symbolized sentence 5
by ‘3z A(z)’, ‘Jwgse A(wase)’, or whatever.

Some more examples will help. Consider these further sen-
tences:

6. No one is angry.
7. There is someone who is not happy.
8. Not everyone is happy.

Sentence 6 can be paraphrased as, ‘It is not the case that some-
one is angry’. We can then symbolize it using negation and
an existential quantifier: ‘-3x 4(x)’. Yet sentence 6 could also
be paraphrased as, ‘Everyone is not angry’. With this in mind,
it can be symbolized using negation and a universal quantifier:
‘Vx —A(x)’. Both of these are acceptable symbolizations. Indeed,
it will transpire that, in general, Vx —~d is logically equivalent to
—dxd. (Notice that we have here returned to the practice of
using ‘o’ as a metavariable, from chapter 8.) Symbolizing a sen-
tence one way, rather than the other, might seem more ‘natural’
in some contexts, but it is not much more than a matter of taste.
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Sentence 7 is most naturally paraphrased as, ‘“There is some x,
such that x is not happy’. This then becomes ‘Ix -H(x)’. Of
course, we could equally have written ‘-Vx H(x)’, which we
would naturally read as ‘it is not the case that everyone is happy’.
That too would be a perfectly adequate symbolization of sen-
tence 8.

23.5 Domains

Given the symbolization key we have been using, ‘Vx H(x)’ sym-
bolizes ‘Everyone is happy’. Who is included in this everyone?
When we use sentences like this in English, we usually do not
mean everyone now alive on the Earth. We certainly do not mean
everyone who was ever alive or who will ever live. We usually
mean something more modest: everyone now in the building,
everyone enrolled in the ballet class, or whatever.

In order to eliminate this ambiguity, we will need to specify
a DOMAIN. The domain is the collection of things that we are
talking about. So if we want to talk about people in Chicago, we
define the domain to be people in Chicago. We write this at the
beginning of the symbolization key, like this:

domain: people in Chicago

The quantifiers range over the domain. Given this domain, ‘Vx’ is
to be read roughly as ‘Every person in Chicago is such that...’
and ‘J«’ is to be read roughly as ‘Some person in Chicago is such
that...’.

In FOL, the domain must always include at least one thing.
Moreover, in English we can legitimately infer ‘something is an-
gry’ from ‘Gregor is angry’. In FOL, then, we will want to be able
to infer ‘Ix A(x)’ from ‘A(g)’. So we will insist that each name
must pick out exactly one thing in the domain. If we want to
name people in places beside Chicago, then we need to include
those people in the domain.
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A domain must have at least one member. Every name
must pick out exactly one member of the domain, but a
member of the domain may be picked out by one name,
many names, or none at all.

Even allowing for a domain with just one member can pro-
duce some strange results. Suppose we have this as a symboliza-
tion key:

domain: the Eiffel Tower
P(x): x is in Paris.

The sentence Vx P(x) might be paraphrased in English as ‘Ev-
erything is in Paris.” Yet that would be misleading. It means
that everything in the domain is in Paris. This domain contains
only the Eiffel Tower, so with this symbolization key Vx P (x) just
means that the Eiffel Tower is in Paris.

23.6 Non-referring terms

In FOL, each name must pick out exactly one member of the
domain. A name cannot refer to more than one thing—it is a
singular term. Each name must still pick out something. This is
connected to a classic philosophical problem: the so-called prob-
lem of non-referring terms.

Medieval philosophers typically used sentences about the
chimera to exemplify this problem. Chimera is a mythological
creature; it does not really exist. Consider these two sentences:

9. Chimera is angry.
10. Chimera is not angry.

It is tempting just to define a name to mean ‘chimera.” The sym-
bolization key would look like this:

domain: creatures on Earth
A(x): x s angry.
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¢: chimera

We could then symbolize sentence g as A(¢) and sentence 10 as
-A(c).

Problems will arise when we ask whether these sentences are
true or false.

One option is to say that sentence g is not true, because there
is no chimera. If sentence g is false because it talks about a non-
existent thing, then sentence 10 is false for the same reason. Yet
this would mean that A(¢) and —=A(¢) would both be false. Given
the truth conditions for negation, this cannot be the case.

Since we cannot say that they are both false, what should
we do? Another option is to say that sentence g is meaningless
because it talks about a non-existent thing. So 4(¢) would be a
meaningful expression in FOL for some interpretations but not
for others. Yet this would make our formal language hostage
to particular interpretations. Since we are interested in logical
form, we want to consider the logical force of a sentence like 4(¢)
apart from any particular interpretation. If A(¢) were sometimes
meaningful and sometimes meaningless, we could not do that.

This is the problem of non-referring terms, and we will return to
it later (see chapter 28). The important point for now is that each
name of FOL must refer to something in the domain, although the
domain can contain any things we like. If we want to symbolize
arguments about mythological creatures, then we must define a
domain that includes them. This option is important if we want
to consider the logic of stories. We can symbolize a sentence
like ‘Sherlock Holmes lived at 221B Baker Street’ by including
fictional characters like Sherlock Holmes in our domain.
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Sentences with
one quantifier

We now have all of the pieces of FOL. Symbolizing more com-
plicated sentences is just a matter of knowing how to combine
predicates, names, quantifiers, and connectives. There is a knack
to this, and there is no substitute for practice.

24.1 Common quantifier phrases

Consider these sentences:

1. Every coin in my pocket is a quarter.

2. Some coin on the table is a dime.

3. Not all the coins on the table are dimes.
4. None of the coins in my pocket are dimes.

In providing a symbolization key, we need to specify a domain.
Since we are talking about coins in my pocket and on the table,
the domain must at least contain all of those coins. Since we are
not talking about anything besides coins, we let the domain be
all coins. Since we are not talking about any specific coins, we
do not need to deal with any names. So here is our key:

199
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domain: all coins

P(x): x 1s in my pocket
T (x): x is on the table
0(x): x is a quarter
D(x): x is a dime

Sentence 1 is most naturally symbolized using a universal quanti-
fier. The universal quantifier says something about everything in
the domain, not just about the coins in my pocket. Sentence 1 can
be paraphrased as ‘for any coin, if that coin is in my pocket then
it is a quarter’. So we can symbolize it as Vx(P(x) — Q(x)) .

Since sentence 1 is about coins that are both in my pocket
and that are quarters, it might be tempting to symbolize it using
a conjunction. However, the sentence ‘Vx(P(x) A Q(x))’ would
symbolize the sentence ‘every coin is both a quarter and in my
pocket’. This obviously means something very different than sen-
tence 1. And so we see:

A sentence can be symbolized as Vx(F(x) — G(x)) if it
can be paraphrased in English as ‘every F is G’.

Sentence 2 is most naturally symbolized using an existential
quantifier. It can be paraphrased as ‘there is some coin which is
both on the table and which is a dime’. So we can symbolize it
as ‘x(T(x) A D(x))’.

Notice that we needed to use a conditional with the universal
quantifier, but we used a conjunction with the existential quanti-
fier. Suppose we had instead written ‘Ix(7°(x) — D(x))’. That
would mean that there is some object in the domain of which
‘(T (x) = D(x))’ is true. Recall that, in TFL, o — 9 is logically
equivalent (in TFL) to —sf vV 9. This equivalence will also hold
in FOL. So ‘x(7T(x) — D(x))’ is true if there is some object
in the domain, such that ‘(=7"(x) vV D(x))’ is true of that object.
That is, ‘Ix(7 (x) — D(x))’ is true if some coin is ¢ither not on
the table or is a dime. Of course there is a coin that is not on
the table: there are coins in lots of other places. So it is very easy
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for ‘3x(T'(x) — D(x))’ to be true. A conditional will usually be
the natural connective to use with a universal quantifier, but a
conditional within the scope of an existential quantifier tends to
say something very weak indeed. As a general rule of thumb, do
not put conditionals in the scope of existential quantifiers unless
you are sure that you need one.

A sentence can be symbolized as Ix(F (x) A G(x)) if it can
be paraphrased in English as ‘some F is G’.

Sentence 3 can be paraphrased as, ‘It is not the case that
every coin on the table is a dime’. So we can symbolize it by
‘=Vx(T(x) — D(x))’. You might look at sentence 3 and para-
phrase it instead as, ‘Some coin on the table is not a dime’. You
would then symbolize it by ‘Ix(7'(x) A =D(x))’. Although it is
probably not immediately obvious yet, these two sentences are
logically equivalent. (This is due to the logical equivalence be-
tween —Vx of and 3x —9l, mentioned in chapter 23, along with the
equivalence between —(sf — 9B) and o A =%.)

Sentence 4 can be paraphrased as, ‘It is not the case that
there is some dime in my pocket’. This can be symbolized by
‘=3x(P(x) AD(x))’. It might also be paraphrased as, ‘Everything
in my pocket is a non-dime’, and then could be symbolized by
Vx(P(x) — ~D(x))’. Again the two symbolizations are logically
equivalent; both are correct symbolizations of sentence 4.

A sentence that can be paraphrased as ‘no F is G’ can be
symbolized as =3x(F(x) A €(x)) and also as Vx(F(x) —
-G(x)).

Finally, consider ‘only’, as in:
5. Only dimes are on the table.

How should we symbolize this? A good strategy is to consider
when the sentence would be false. If we are saying that only dimes
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are on the table, we are excluding all the cases where something
on the table is a non-dime. So we can symbolize the sentence
the same way we would symbolize ‘No non-dimes are on the ta-
ble” Remembering the lesson we just learned, and symbolizing
‘x is a non-dime’ as ‘~D(x)’, the possible symbolizations are:
‘=3x(T (x) A =D(x))’, or alternatively: ‘Vx(T'(x) — ——-D(x))’.
Since double negations cancel out, the second is just as good as
Vx(T (x) — D(x))’. In other words, ‘Only dimes are on the ta-
ble’ and ‘Everything on the table is a dime’ are symbolized the
same way.

A sentence that can be paraphrased as ‘only Fs are G’
can be symbolized as —-3x(6(x) A =-F(x)) and also as
Vx(€(x) = F(x)).

24.2 Empty predicates

In chapter 23, we emphasized that a name must pick out exactly

one object in the domain. However, a predicate need not apply to

anything in the domain. A predicate that applies to nothing in the

domain is called an EMPTY PREDICATE. This is worth exploring.
Suppose we want to symbolize these two sentences:

6. Every monkey knows sign language.
7. Some monkey knows sign language.

It is possible to write the symbolization key for these sentences
in this way:

domain: animals
M (x): x is a monkey.
S(x): x knows sign language.

Sentence 6 can now be symbolized by ‘Vx(M (x) — S(x))’. Sen-
tence 7 can be symbolized as ‘Ix (M (x) A S(x)) .

It is tempting to say that sentence 6 entails sentence 7. That
is, we might think that it is impossible that every monkey knows
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sign language unless some monkey knows sign language. But this
would be a mistake. It is possible for the sentence ‘Vx(M(x) —
S(x))’ to be true even though the sentence ‘Ix (M (x) A S(x))’ is
false.

How can this be? The answer comes from considering
whether these sentences would be true or false if there were no
monkeys. If there were no monkeys at all (in the domain), then
Vx(M(x) — S(x))’ would be vacuously true: take any monkey
you like—it knows sign language! But if there were no monkeys
at all (in the domain), then ‘Jx(M (x) A S(x))’ would be false.

Another example will help to bring this home. Suppose we
extend the above symbolization key, by adding:

R(x): x 1s a refrigerator

Now consider the sentence ‘Vx(R(x) — M(x))’. This symbol-
izes ‘every refrigerator is a monkey’. This sentence is true, given
our symbolization key, which is counterintuitive, since we (pre-
sumably) do not want to say that there are a whole bunch of
refrigerator monkeys. It is important to remember, though, that
Vx(R(x) — M(x)) is true iff any member of the domain that
is a refrigerator is a monkey. Since the domain is animals, there
are no refrigerators in the domain. Again, then, the sentence is
vacuously true.

If you were actually dealing with the sentence ‘All refrigera-
tors are monkeys’, then you would most likely want to include
kitchen appliances in the domain. Then the predicate ‘R’ would
not be empty and the sentence ‘Vx(R(x) — M (x))’ would be
false.

When F is an empty predicate, any sentence Vx(F(x) —
...) is vacuously true.
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24.3 Picking a domain

The appropriate symbolization of an English language sentence
in FOL will depend on the symbolization key. Choosing a key can
be difficult. Suppose we want to symbolize the English sentence:

8. Every rose has a thorn.
We might offer this symbolization key:

R(x): x is a rose
T (x): x has a thorn

It is tempting to say that sentence 8 should be symbolized as
Vx(R(x) — T'(x))’, but we have not yet chosen a domain. If
the domain contains all roses, this would be a good symboliza-
tion. Yet if the domain is merely things on my kitchen table, then
‘Vx(R(x) — T(x))’ would only come close to covering the fact
that every rose on my kitchen table has a thorn. If there are no
roses on my kitchen table, the sentence would be trivially true.
This is not what we want. To symbolize sentence 8 adequately,
we need to include all the roses in the domain, but now we have
two options.

First, we can restrict the domain to include all roses but
only roses. Then sentence 8 can, if we like, be symbolized with
Vx T (x)’. This is true iff everything in the domain has a thorn;
since the domain is just the roses, this is true iff every rose has a
thorn. By restricting the domain, we have been able to symbolize
our English sentence with a very short sentence of FOL. So this
approach can save us trouble, if every sentence that we want to
deal with is about roses.

Second, we can let the domain contain things besides roses:
rhododendrons, rats, rifles, whatevers; and we will certainly need
to include a more expansive domain if we simultaneously want
to symbolize sentences like:

9. Every cowboy sings a sad, sad song.
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Our domain must now include both all the roses (so that we can
symbolize sentence 8) and all the cowboys (so that we can sym-
bolize sentence g). So we might offer the following symbolization

key:
domain: people and plants
C(x): x is a cowboy
S(x): x sings a sad, sad song
R(x): x 1S a rose
T (x): « has a thorn

Now we will have to symbolize sentence 8 with Vx(R(x) —
T (x))’, since ‘Vx T'(x)’ would symbolize the sentence ‘every per-
son or plant has a thorn’. Similarly, we will have to symbolize
sentence g with Vx(C(x) — S(x))’.

In general, the universal quantifier can be used to symbolize
the English expression ‘everyone’ if the domain only contains
people. If there are people and other things in the domain, then
‘everyone’ must be treated as ‘every person’.

24.4 The utility of paraphrase

When symbolizing English sentences in FOL, it is important to
understand the structure of the sentences you want to symbolize.
What matters is the final symbolization in FOL, and sometimes
you will be able to move from an English language sentence di-
rectly to a sentence of FOL. Other times, it helps to paraphrase
the sentence one or more times. Each successive paraphrase
should move from the original sentence closer to something that
you can easily symbolize directly in FOL.

For the next several examples, we will use this symbolization
key:

domain: people
B(x): « is a bassist
R(x): x is a rock star
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k: Kim Deal
Now consider these sentences:

10. If Kim Deal is a bassist, then she is a rock star.
11. If a person is a bassist, then she is a rock star.

The same words appear as the consequent in sentences 10 and 11
(‘... she is a rock star’), but they mean very different things. To
make this clear, it often helps to paraphrase the original sen-
tences, removing pronouns.

Sentence 10 can be paraphrased as, ‘If Kim Deal is a bassist,
then Kim Deal is a rockstar’. This can obviously be symbolized
as ‘B(k) —» R(k)’.

Sentence 11 must be paraphrased differently: ‘If a person is
a bassist, then that person is a rock star’. This sentence is not
about any particular person, so we need a variable. As an inter-
mediate step, we can paraphrase this as, ‘For any person x, if x
is a bassist, then x is a rockstar’. Now this can be symbolized
as ‘Vx(B(x) — R(x))’. This is the same sentence we would have
used to symbolize ‘Everyone who is a bassist is a rock star’. On
reflection, that is surely true iff sentence 11 is true, as we would
hope.

Consider these further sentences:

12. If anyone is a bassist, then Kim Deal is a rock star.
13. If anyone is a bassist, then she is a rock star.

The same words appear as the antecedent in sentences 12 and 13
(‘If anyone is a bassist...”), but it can be tricky to work out how
to symbolize these two uses. Again, paraphrase will come to our
aid.

Sentence 12 can be paraphrased, ‘If there is at least one
bassist, then Kim Deal is a rock star’. It is now clear that this is
a conditional whose antecedent is a quantified expression; so we
can symbolize the entire sentence with a conditional as the main
logical operator: ‘IxB(x) — R(k)’.
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Sentence 13 can be paraphrased, ‘For all people x, if x is
a bassist, then x is a rock star’. Or, in more natural English,
it can be paraphrased by °‘All bassists are rock stars’. It is best
symbolized as ‘Vx(B(x) — R(x))’, just like sentence 11.

The moral is that the English words ‘any’ and ‘anyone’ should
typically be symbolized using quantifiers, and if you are having
a hard time determining whether to use an existential or a uni-
versal quantifier, try paraphrasing the sentence with an English
sentence that uses words besides ‘any’ or ‘anyone’.

24.5 Quantifiers and scope

Continuing the example, suppose we want to symbolize these
sentences:

14. If everyone is a bassist, then Lars is a bassist.
15. Everyone is such that, if they are a bassist, then Lars is a
bassist.

To symbolize these sentences, we will have to add a new name to
the symbolization key, namely:

[: Lars

Sentence 14 is a conditional, whose antecedent is ‘everyone is
a bassist’, so we will symbolize it with ‘Vx B(x) — B([/)’. This
sentence is necessarily true: if everyone is indeed a bassist, then
take anyone you like—for example Lars—and he will be a bassist.

Sentence 15, by contrast, might best be paraphrased by ‘every
person x is such that, if x is a bassist, then Lars is a bassist’.
This is symbolized by ‘Vx(B(x) — B(l))’. This sentence can
well be false. For instance, Kim Deal is a bassist. So ‘B(k)’ is
true. Suppose that Lars is not a bassist (say, he’s a drummer
instead), so ‘B([)’ is false. Accordingly, ‘B(k) — B(l)’ will be
false, so ‘Vx(B(x) — B(l))’ will be false as well. This example
shows something else: ‘Vx(B(x) — B(l))’ is false exactly when
Jx B(x) — B(!) is false; they are equivalent. Recalling the lesson
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about how to symbolize ‘any’ in sentence 12 from the previous
section, we can conclude that sentence 15 is just a convoluted
way of saying “Lars is a bassist, if anyone is”.

In short, VxB(x) — B(l)’ and ‘Vx(B(x) — B(l))’ are very
different sentences. We can explain the difference in terms of the
scope of the quantifier. The scope of quantification is very much
like the scope of negation, which we considered when discussing
TFL, and it will help to explain it in this way.

In the sentence ‘~B(k) — B(l)’, the scope of ‘=’ is just the
antecedent of the conditional. We are saying something like:
if ‘B(k)’ is false, then ‘B(/)’ is true. Similarly, in the sentence
‘VxB(x) — B(l)’, the scope of ‘Vx’ is just the antecedent of the
conditional. We are saying something like: if ‘B(x)’ is true of
everything, then ‘B(l)’ is also true.

In the sentence ‘=(B(k) — B(l))’, the scope of ‘=’ is the en-
tire sentence. We are saying something like: ‘(B(k) — B({))’ is
false. Similarly, in the sentence ‘Vx(B(x) — B(/))’, the scope
of ‘Vx’ is the entire sentence. We are saying something like:
‘(B(x) — B(l))’ is true of everything.

The moral of the story is simple. When you are using condi-
tionals, be very careful to make sure that you have sorted out the
scope correctly.

24.6 Ambiguous predicates

Suppose we just want to symbolize this sentence:
16. Adina is a skilled surgeon.

Let the domain be people, let K (x) mean ‘x is a skilled surgeon’,
and let ¢ mean Adina. Sentence 16 is simply K (a).
Suppose instead that we want to symbolize this argument:

The hospital will only hire a skilled surgeon.
All surgeons are greedy.
Billy is a surgeon, but is not skilled.
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.. Billy is greedy, but the hospital will not hire him.

We need to distinguish being a skilled surgeon from merely being
a surgeon. So we define this symbolization key:

domain: people
G(x): x is greedy
H (x): The hospital will hire x
R(x): x i a surgeon
K(x): x is skilled
b: Billy

Now the argument can be symbolized in this way:

Vx[ﬂ(R(x) ANK(x)) — —|H(x)]
Vx(R(x) = G(x))
R(b) A =K (b)

. G(b) A—=H(b)

Next suppose that we want to symbolize this argument:

Carol is a skilled surgeon and a tennis player.
.. Carol is a skilled tennis player.

If we start with the symbolization key we used for the previous
argument, we could add a predicate (let 7'(x) mean ‘x is a tennis
player’) and a name (let ‘¢’ be a name for Carol). Then the
argument becomes:

(R(c) NK(¢)) AT (c)
~ T(c)ANK(c)

This symbolization is a disaster! It takes what in English is a
terrible argument and symbolizes it as a valid argument in FOL.
The problem is that there is a difference between being skilled as
a surgeon and skilled as a tennis player. Symbolizing this argument
correctly requires two separate predicates, one for each type of
skill. If we let Kj(x) mean ‘x is skilled as a surgeon’ and Ka(x)
mean ‘x is skilled as a tennis player,” then we can symbolize the
argument in this way:
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(R(c) A K1(c)) AT (c)
~ T(c) AN Ky(c)

Like the English language argument it symbolizes, this is invalid.

The moral of these examples is that you need to be careful of
symbolizing predicates in an ambiguous way. Similar problems
can arise with predicates like good, bad, big, and small. Just as
skilled surgeons and skilled tennis players have different skills,
big dogs, big mice, and big problems are big in different ways.

Is it enough to have a predicate that means ‘x is a skilled
surgeon’, rather than two predicates ‘x is skilled’ and ‘x is a sur-
geon’? Sometimes. As sentence 16 shows, sometimes we do not
need to distinguish between skilled surgeons and other surgeons.

Must we always distinguish between different ways of being
skilled, good, bad, or big? No. As the argument about Billy
shows, sometimes we only need to talk about one kind of skill. If
you are symbolizing an argument that is just about dogs, it is fine
to define a predicate that means ‘x is big.” If the domain includes
dogs and mice, however, it is probably best to make the predicate
mean ‘x is big for a dog.’

Practice exercises

A. Here are the syllogistic figures identified by Aristotle and his
successors, along with their medieval names:

Barbara. All G are F. All H are G. So: All H are F.
Celarent. No G are F. All H are G. So: No H are F.
Ferio. No G are F. Some H is G. So: Some H is not F.
Darii. All G are F. Some H is G. So: Some H is F.
Camestres. All F are G. No H are G. So: No H are F.
Cesare. No F are G. All H are G. So: No H are F.
Baroko. All F are G. Some H is not G. So: Some H is not F.
Festino. No F are G. Some H are G. So: Some H is not F.
Datisi. All G are F. Some G is H. So: Some H is F.
Disamis. Some G is F. All G are H. So: Some H is F.
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11. Ferison. No G are F. Some G is H. So: Some H is not F.

12. Bokardo. Some G is not F. All G are H. So: Some H is
not F.

13. Camenes. All F are G. No G are H. So: No H is F.

14. Dimaris. Some F is G. All G are H. So: Some H is F.

15. Fresison. No F are G. Some G is H. So: Some H is not F.

Symbolize each figure in FOL.

B. Using the following symbolization key:

domain: people
K(x): « knows the combination to the safe
S(x): x 1s a spy
V(x): x IS a vegetarian
h: Hofthor

i: Ingmar
symbolize the following sentences in FOL:

1. Neither Hofthor nor Ingmar is a vegetarian.

2. No spy knows the combination to the safe.

3. No one knows the combination to the safe unless Ingmar
does.

4. Hofthor is a spy, but no vegetarian is a spy.

C. Using this symbolization key:

domain: all animals

A(x): x is an alligator
M(x): x is a monkey
R(x): x is a reptile
Z(x): x lives at the zoo

a: Amos

b: Bouncer

¢: Cleo

symbolize each of the following sentences in FOL:
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Amos, Bouncer, and Cleo all live at the zoo.

Bouncer is a reptile, but not an alligator.

Some reptile lives at the zoo.

Every alligator is a reptile.

Any animal that lives at the zoo is either a monkey or an
alligator.

There are reptiles that are not alligators.

. If any animal is an reptile, then Amos is.

7
8.

If any animal is an alligator, then it is a reptile.

D. For each argument, write a symbolization key and symbolize
the argument in FOL.

1.

Willard is a logician. All logicians wear funny hats. So
Willard wears a funny hat.

Nothing on my desk escapes my attention. There is a com-
puter on my desk. As such, there is a computer that does
not escape my attention.

All my dreams are black and white. Old TV shows are in
black and white. Therefore, some of my dreams are old TV
shows.

Neither Holmes nor Watson has been to Australia. A per-
son could have seen a kangaroo only if they had been to
Australia or to a zoo. Although Watson has not seen a
kangaroo, Holmes has. Therefore, Holmes has been to a
Z00.

No one expects the Spanish Inquisition. No one knows
the troubles I've seen. Therefore, anyone who expects the
Spanish Inquisition knows the troubles I've seen.

. All babies are illogical. Nobody who is illogical can man-

age a crocodile. Berthold is a baby. Therefore, Berthold is
unable to manage a crocodile.



CHAPTER 25

Multiple
generality

So far, we have only considered sentences that require one-place
predicates and one quantifier. The full power of FOL really comes
out when we start to use many-place predicates and multiple
quantifiers. For this insight, we largely have Gottlob Frege (1879)
to thank, but also C. S. Peirce.

25.1 Many-placed predicates

All of the predicates that we have considered so far concern prop-
erties that objects might have. Those predicates have one gap in
them, and to make a sentence, we simply need to slot in one term.
They are ONE-PLACE predicates.

However, other predicates concern the relation between two
things. Here are some examples of relational predicates in En-
glish:

> loves
> is to the left of
> is in debt to

213
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These are TwWO-PLACE predicates. They need to be filled in with
two terms in order to make a sentence. Conversely, if we start with
an English sentence containing many singular terms, we can re-
move two singular terms, to obtain different two-place predicates.
Consider the sentence “Vinnie borrowed the family car from Nun-
zio’. By deleting two singular terms, we can obtain any of three
different two-place predicates

> Vinnie borrowed from
> borrowed the family car from
> borrowed from Nunzio

and by removing all three singular terms, we obtain a THREE-
PLACE predicate:

> borrowed from

Indeed, there is no in principle upper limit on the number of
places that our predicates may contain.

25.2 Mind the gap(s)!

We have used the same symbol, ¢ ’, to indicate a gap formed
by deleting a term from a sentence. However, as Frege empha-
sized, these are different gaps. To obtain a sentence, we can fill
them in with the same term, but we can equally fill them in with
different terms, and in various different orders. The following
are three perfectly good sentences, obtained by filling in the gaps

in loves ’ in different ways; but they all have distinc-
tively different meanings:

1. Karl loves Imre.
2. Imre loves Karl.
3. Karl loves Karl.

The point is that we need to keep track of the gaps in predicates,
so that we can keep track of how we are filling them in. To keep
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track of the gaps, we assign them variables. Suppose we want to
symbolize the preceding sentences. Then I might start with the
following symbolization key:

domain: people
i: Imre
k: Karl
L(x,y): x loves y

Sentence 1 will be symbolized by ‘L(k,i)’, sentence 2 will be
symbolized by ‘L(i,k)’, and sentence 3 will be symbolized by
‘L(k,k)’. Here are a few more sentences that we can symbolize
with the same key:

4. Imre loves himself.
5. Karl loves Imre, but not vice versa.
6. Karl is loved by Imre.

Sentence 4 can be paraphrased as ‘Imre loves Imre’, and so sym-
bolized by ‘L(i,i)’. Sentence 5 is a conjunction. We can para-
phrase it as ‘Karl loves Imre, and Imre does not love Karl’, and
so symbolize it as ‘L(k,i) A =L(i,k)’. Sentence 6 can be para-
phrased by ‘Imre loves Karl’, and so symbolized as ‘L(7,k)’. In
this last case, of course, we have lost the difference in fone between
the active and passive voice; but we have at least preserved the
truth conditions.

But the relationship between ‘Imre loves Karl’ and ‘Karl is
loved by Imre’ highlights something important. To see what, sup-
pose we add another entry to our symbolization key:

M(x,y): , loves x

The entry for ‘M’ uses exactly the same English word—‘loves’—
as the entry for ‘L’. But the gaps have been swapped around! (Just
look closely at the subscripts.) And this matters.

To explain: when we see a sentence like ‘L(£,i)’, we are being
told to take the first name (i.e., ‘k’) and associate its value (i.e.,
Karl) with the gap labelled ‘x’, then take the second name (i.e., ‘i’)
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and associate its value (i.e., Imre) with the gap labelled ‘y’, and
so come up with: Karl loves Imre. The sentence ‘M (i, k)’ also tells
us to take the first name (i.e., ‘4’) and plug its value into the gap
labelled ‘x’, and take the second name (i.e., ‘k’) and plug its value
into the gap labelled ‘y’, and so also come up with: Karl loves
Imre.

So, ‘L(i,k)’ and ‘M (k,i)’ both symbolize ‘Imre loves Karl’,
whereas ‘L(k,i)’ and ‘M (i, k)’ both symbolize ‘Karl loves Imre’.
Since love can be unrequited, these are different claims.

One last example might be helpful. Suppose we add this to
our symbolisation key:

P(x,9): x prefers x to y

Now the sentence ‘P (i, k)’ symbolizes ‘Imre prefers Imre to Karl’,
and ‘P(k,i)’ symbolizes ‘Karl prefers Karl to Imre’. And note
that we could have achieved the same effect, if we had instead
specified:

P(x,y): « prefers themselves to y

In any case, the overall moral of this is simple. When dealing with
predicates with more than one place, pay careful attention to the order

of the gaps!

25.3 The order of quantifiers

Consider the sentence ‘everyone loves someone’. This is poten-
tially ambiguous. It might mean either of the following:

7. For every person x, there is some person that x loves.
8. There is some particular person whom every person loves.

Sentence 7 can be symbolized by ‘Vx3y L(x,y)’. Suppose that our
domain of discourse is restricted to Imre, Juan and Karl. Suppose
also that Karl loves Imre but not Juan, that Imre loves Juan but
not Karl, and that Juan loves Karl but not Imre. Then sentence 7
is true.



CHAPTER 25. MULTIPLE GENERALITY 217

Sentence 8 is symbolized by ‘IyVx L(x,y)’. Sentence 8 is not
true in the situation just described, since no single person is loved
by everyone. All three of Juan, Imre and Karl would have to
converge on (at least) one object of love.

The point of the example is to illustrate that the order of the
quantifiers matters a great deal. Indeed, to switch them around is
called a gquantifier shift fallacy. Here is an example, which comes
up in various forms throughout the philosophical literature:

For every person, there is some truth they cannot know.
(vV3)
.. There is some particular truth that no person can know.

(3v)
This argument form is obviously invalid. It’s just as bad as:"

Every dog has its day. (V3)
. There is a day for all the dogs. (3av)

The order of quantifiers is also important in definitions in
mathematics. For instance, there is a big difference between
pointwise and uniform continuity of functions:

> A function f is pointwise continuous if
VeVx3o¥y(jx —y| <6 = [f(x) - F()| < )

> A function f is uniformly continuous if
VEEI(SVxVy(|x —y| <0 — |f(x) —f(y)| <€)

The moral is simple: take great care with the order of your quan-
tifiers!

!Thanks to Rob Trueman for the example.
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25.4 Stepping-stones to symbolization

As we are starting to see, symbolization in FOL can become a bit
tricky. So, when symbolizing a complex sentence, you should lay
down several stepping-stones. As usual, the idea is best illustrated
by example. Consider this symbolisation key:

domain: people and dogs

D(x): _ yisadog
F(x,9): « is a friend of y
O(x,y): x owns )
g: Geraldo

Now let’s try to symbolize these sentences:

9. Geraldo is a dog owner.
10. Someone is a dog owner.
11. All of Geraldo’s friends are dog owners.
12. Every dog owner is a friend of a dog owner.
13. Every dog owner’s friend owns a dog of a friend.

Sentence g can be paraphrased as, ‘There is a dog that Geraldo
owns’. This can be symbolized by ‘Ix(D(x) A O(g,x))’.

Sentence 10 can be paraphrased as, ‘There is some y such
that y is a dog owner’. Dealing with part of this, we might write
‘Jy(y is a dog owner)’. Now the fragment we have left as ‘y is a
dog owner’ is much like sentence g, except that it is not specifi-
cally about Geraldo. So we can symbolize sentence 10 by:

Jy3Ax(D(x) A O(y,x))

We should pause to clarify something here. In working
out how to symbolize the last sentence, we wrote down
‘Jy(y is a dog owner)’. To be very clear: this is neither an FOL
sentence nor an English sentence: it uses bits of FOL (=2, ‘y’)
and bits of English (‘dog owner’). It is really just a stepping-stone
on the way to symbolizing the entire English sentence with a sen-

tence of FOL. You should regard it as a bit of rough-working-out,
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on a par with the doodles that you might absent-mindedly draw
in the margin of this book, whilst you are concentrating fiercely
on some problem.

Sentence 11 can be paraphrased as, ‘Every x who is a friend
of Geraldo is a dog owner’. Using our stepping-stone tactic, we
might write

Vax [F(x,g) — x is a dog owner]

Now the fragment that we have left to deal with, ‘¢ is a dog
owner’, is structurally just like sentence 9. However, it would be
a mistake for us simply to write

Vx| F(x,g) = 3x(D(x) A O(x,%))]

for we would here have a clash of variables. The scope of the
universal quantifier, ‘Vx’, is the entire conditional, so the ‘x’ in
‘D(x)’ should be governed by that, but ‘D(x)’ also falls under
the scope of the existential quantifier ‘3x’, so the ‘x’ in ‘D(x)’
should be governed by that. Now confusion reigns: which ‘x’ are
we talking about? Suddenly the sentence becomes ambiguous (if
it is even meaningful at all), and logicians hate ambiguity. The
broad moral is that a single variable cannot serve two quantifier-
masters simultaneously.

To continue our symbolization, then, we must choose some
different variable for our existential quantifier. What we want is
something like:

Vx[F(x.g) = 32(D(2) A 0(x.2))]

This adequately symbolizes sentence 11.

Sentence 12 can be paraphrased as ‘For any x that is a dog
owner, there is a dog owner who x is a friend of’. Using our
stepping-stone tactic, this becomes

Vx[x is a dog owner — Jy(y is a dog owner A F(x,y))]
Completing the symbolization, we end up with

Vx[32(D(2) A O(x,2)) = Fy(32(D(2) A 0(y,2)) A F(x,))]
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Note that we have used the same letter, ‘z’, in both the antecedent
and the consequent of the conditional, but that these are gov-
erned by two different quantifiers. This is ok: there is no clash
here, because it is clear which quantifier that variable falls under.
We might graphically represent the scope of the quantifiers thus:

scope of ‘Vx’

scope of ‘3y’

scope of 1st ‘32’ scope of end ‘32’

Vx[Ez(D(z) AO(x,2z)) — Jy(Fz(D(z) A O(y,2)) /\F(x,y))]

This shows that no variable is being forced to serve two masters
simultaneously.

Sentence 13 is the trickiest yet. First we paraphrase it as ‘For
any x that is a friend of a dog owner, x owns a dog which is
also owned by a friend of x’. Using our stepping-stone tactic, this
becomes:

Vx|x is a friend of a dog owner —

x owns a dog which is owned by a friend of x|

Breaking this down a bit more:
Vx[3y(F(x,9) Ay is a dog owner) —
Jy((D(y) A O(x,9)) A y is owned by a friend of x)]
And a bit more:
Vx[3y(F(x,9) A32(D(z) A 0(y,2))) —
Fy((D(y) A O(x,)) A 3z(F(z,x) A O(z.9)))]

And we are done!
There is one subtle issue we should briefly address. We para-
phrased sentence 10 as ‘There is some y such that y is a dog
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owner’. Now our domain includes people and dogs, and ‘some-
one’ includes people, but (at least arguably) does not include
dogs. To be more correct, we should have paraphrased sen-
tence 10 as ‘There is some y such that y is a person and a dog
owner’. A more accurate symbolization of ‘Someone is a dog
owner’ would require that we add a predicate for is a per-
son’ to our symbolization key:

P(x): x 1s a person

Then we can give a better symbolization of sentence 10:

Jy(P(y) A 3x(D(x) A O(y.%)))

‘Everyone’ and ‘no one’ have to be treated similarly: ‘Everyone
is a friend of Geraldo’ and ‘No one is a friend of Geraldo’ would
be symbolized, respectively, as

Vx(P(x) — F(x,g))
Vx(P(x) — —F(x,9)).

Only ‘someone’, ‘everyone’, and ‘no one’ require this treatment.
In particular, we do not need to explicitly state in the symbol-
ization of sentence g that Geraldo is a person. Neither do we
have to ensure in sentence 11 that Geraldo’s friend x is a person.
Although it may be true that only people can own dogs or be
friends with Geraldo, it is not part of what the sentences say, and
so does not need to be taken into account when we symbolize
them.”

?You might object: but the sentences also don’t say that dogs aren’t people.
E.g., if we're talking about the fictional world of Mickey Mouse, Goofy should
be included in ‘everyone’, but Pluto should not be. That’s why we picked the
predicate ¢ is a person’ and not is a human’: in that domain, Goofy
would fall under both * is a person’ and * is a dog’, but Pluto would
only fall under is a dog’.
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25.5 Supressed quantifiers

Logic can often help to get clear on the meanings of English
claims, especially where the quantifiers are left implicit or their
order is ambiguous or unclear. The clarity of expression and
thinking afforded by FOL can give you a significant advantage
in argument, as can be seen in the following takedown by British
political philosopher Mary Astell (1666-1731) of her contempo-
rary, the theologian William Nicholls. In Discourse IV: The Duty
of Wives to their Husbands of his The Duty of Inferiors towards their
Superiors, in Five Practical Discourses (London 1701), Nicholls ar-
gued that women are naturally inferior to men. In the preface
to the 3rd edition of her treatise Some Reflections upon Marriage,
Occasiond by the Duke and Duchess of Mazarine’s Case; which is also
considered, Astell responded as follows:

"Tis true, thro’ Want of Learning, and of that Su-
perior Genius which Men as Men lay claim to, she
[Astell] was ignorant of the Natural Inferiority of our
Sex, which our Masters lay down as a Self-Evident
and Fundamental Truth. She saw nothing in the Rea-
son of Things, to make this either a Principle or a
Conclusion, but much to the contrary; it being Sedi-
tion at least, if not Treason to assert it in this Reign.

For if by the Natural Superiority of their Sex,
they mean that every Man is by Nature superior to ev-
ery Woman, which is the obvious meaning, and that
which must be stuck to if they would speak Sense,
it woud be a Sin in any Woman to have Dominion
over any Man, and the greatest Queen ought not to
command but to obey her Footman, because no Mu-
nicipal Laws can supersede or change the Law of Na-
ture; so that if the Dominion of the Men be such,
the Salique Law,3 as unjust as English Men have ever

3The Salique law was the common law of France which prohibited the crown
be passed on to female heirs.
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thought it, ought to take place over all the Earth, and
the most glorious Reigns in the English, Danish, Castil-
ian, and other Annals, were wicked Violations of the
Law of Nature!

If they mean that some Men are superior to some
Women this is no great Discovery; had they turnd
the Tables they might have seen that some Women are
Superior to some Men. Or had they been pleased to
remember their Oaths of Allegiance and Supremacy,
they might have known that One Woman is superior
to All the Men in these Nations, or else they have
sworn to very little purpose.* And it must not be
supposd, that their Reason and Religion woud suffer
them to take Oaths, contrary to the Laws of Nature
and Reason of things.?

We can symbolize the different interpretations Astell offers of
Nicholls’ claim that men are superior to women: He either meant
that every man is superior to every woman, i.e.,

V(M (x) = Vy(W () — S(x.9)))
or that some men are superior to some women,

(M (x) A Tp(W (9) A S(x.9))).
The latter is true, but so is

Fy(W (y) A 3x(M(x) A S(y.%)))

(some women are superior to some men), so that would be “no
great discovery.” In fact, since the Queen is superior to all her
subjects, it’s even true that some woman is superior to every man,
ie.,
By(W () AVx(M(x) = S(3,%))).
4In 1706, England was ruled by Queen Anne.

5Mary Astell, Reflections upon Marriage, 1706 Preface, iii-iv, and Mary
Astell, Political Writings, Patricia Springborg (ed.), Cambridge University Press,

1996, pp. 9-10.
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But this is incompatible with the “obvious meaning” of Nicholls’
claim, i.e., the first reading. So what Nicholls claims amounts to
treason against the Queen!

Practice exercises

A. Using this symbolization key:

domain: all animals

A(x): x 1s an alligator
M(x): x is a monkey
R(x): x 1s a reptile
Z(x): x lives at the zoo
L(x,y): x loves y

a: Amos

b: Bouncer

¢: Cleo

symbolize each of the following sentences in FOL:

1. If Cleo loves Bouncer, then Bouncer is a monkey.

2. If both Bouncer and Cleo are alligators, then Amos loves
them both.

Cleo loves a reptile.

Bouncer loves all the monkeys that live at the zoo.

All the monkeys that Amos loves love him back.

Every monkey that Cleo loves is also loved by Amos.
There is a monkey that loves Bouncer, but sadly Bouncer
does not reciprocate this love.

N oo @

B. Using the following symbolization key:

domain: all animals

D(x): x is a dog
S(x): x likes samurai movies
L(x,y): x is larger than y

r: Rave
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h: Shane
d: Daisy

symbolize the following sentences in FOL:

IR AL S

*®

11.
12.
13.
14.
15.
16.

Rave is a dog who likes samurai movies.

Rave, Shane, and Daisy are all dogs.

Shane is larger than Rave, and Daisy is larger than Shane.
All dogs like samurai movies.

Only dogs like samurai movies.

There is a dog that is larger than Shane.

If there is a dog larger than Daisy, then there is a dog larger
than Shane.

No animal that likes samurai movies is larger than Shane.
No dog is larger than Daisy.

. Any animal that dislikes samurai movies is larger than

Rave.

There is an animal that is between Rave and Shane in size.
There is no dog that is between Rave and Shane in size.
No dog is larger than itself.

Every dog is larger than some dog.

There is an animal that is smaller than every dog.

If there is an animal that is larger than any dog, then that
animal does not like samurai movies.

C. Using the symbolization key given, symbolize each English-
language sentence into FOL.

domain: candies

C(x): » has chocolate in it
M(x): x has marzipan in it
S(x): x has sugar in it
T (x): Boris has tried x
B(x,y): «x is better than y

1.
2.

Boris has never tried any candy.
Marzipan is always made with sugar.
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Some candy is sugarfree.

The very best candy is chocolate.

No candy is better than itself.

Boris has never tried sugarfree chocolate.

Boris has tried marzipan and chocolate, but never together.
Any candy with chocolate is better than any candy without
it.

Any candy with chocolate and marzipan is better than any
candy that lacks both.

D. Using the following symbolization key:

domain: people and dishes at a potluck

R(x): x has run out
T (x): x is on the table
F(x): x is food
P(x): x is a person
L(x,y): x likes y
e: Eli

f: Francesca
g: the guacamole

symbolize the following English sentences in FOL:

© ON STk

All the food is on the table.

If the guacamole has not run out, then it is on the table.
Everyone likes the guacamole.

If anyone likes the guacamole, then Eli does.

Francesca only likes the dishes that have run out.
Francesca likes no one, and no one likes Francesca.

Eli likes anyone who likes the guacamole.

Eli likes anyone who likes the people that he likes.

If there is a person on the table already, then all of the food
must have run out.

E. Using the following symbolization key:

domain: people
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D(x): . dances ballet
F(x): « is female
M(x): . ismale
C(x,y): « is a child of y
S(x,9): » is a sibling of y
¢: Elmer
j: Jane
p: Patrick

symbolize the following sentences in FOL:

1. All of Patrick’s children are ballet dancers.
2. Jane is Patrick’s daughter.
3. Patrick has a daughter.
4. Jane is an only child.
5. All of Patrick’s sons dance ballet.
6. Patrick has no sons.
7. Jane is Elmer’s niece.
8. Patrick is Elmer’s brother.
9. Patrick’s brothers have no children.
10. Jane is an aunt.
11. Everyone who dances ballet has a brother who also dances
ballet.
12. Every woman who dances ballet is the child of someone
who dances ballet.



CHAPTER 26

Identity

Consider this sentence:
1. Pavel owes money to everyone.

Let the domain be people; this will allow us to symbolize ‘ev-
eryone’ with a universal quantifier. Offering the symbolization
key:

O(x,y): x Owes money to ¥
p: Pavel

we can symbolize sentence 1 by ‘Vx O(p,x)’. But this has a (per
haps) odd consequence. It requires that Pavel owes money to ev-
ery member of the domain (whatever the domain may be). The
domain certainly includes Pavel. So this entails that Pavel owes
money to himself. And maybe we did not want to say that. Maybe
we meant to leave it open if Pavel owes money to himself, some-
thing we could have expressed more precisely by using either one
of the following:

2. Pavel owes money to everyone else.
3. Pavel owes money to everyone other than Pavel.

But we do not have any way for dealing with the italicized words
yet. The solution is to add another symbol to FOL.

228
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26.1 Adding identity

The symbol ‘=" will be a two-place predicate. Since it will have
a special meaning, we shall write it a bit differently: we put it
between two terms, rather than out front. (This should also be
familiar; consider a mathematical equation like % = 0.5.) And
the special meaning for ‘=’ is given by the fact that we always
adopt the following symbolization key:

X=9y: x is identical to ¥

This does not mean merely that the terms to the left and right of
‘=" refer to objects that are indistinguishable, or that all of the
same things are true of them. Rather, it means that the terms to
the left and right of ‘=’ refer to one and the same object.

To put this to use, suppose we want to symbolize this sen-
tence:

4. Pavel is Mister Chekov.
Let us add to our symbolization key:
¢: Mister Chekov

Now sentence 4 can be symbolized as ‘p = ¢’. This tells us that
the names ‘p’ and ‘¢’ both name the same thing.

We can also now deal with sentences 2 and 3. Both of these
sentences can be paraphrased as ‘Everyone who is not Pavel is
owed money by Pavel’. Paraphrasing some more, we get: ‘For
all x, if x is not Pavel, then x is owed money by Pavel’. Now that
we are armed with our new identity symbol, we can symbolize
this as ‘Vx(-x =p — 0(p,x))’.

This last sentence contains the formula ‘- x = p’. That might
look a bit strange, because the symbol that comes immediately
after the ‘=’ is a variable, rather than a predicate, but this is not
a problem. We are simply negating the entire formula ‘x = p’.
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26.2 ‘Only’ and ‘except’

In addition to sentences that use the word ‘else’, and ‘other than’,
identity is helpful when symbolizing some sentences that contain
the words ‘only’, and ‘except’. Consider:

5. Only Pavel owes money to Hikaru.

Let ‘4’ name Hikaru. Plausibly, sentence 5 is true if, and only if,
both of the following conditions hold:

6. Pavel owes money to Hikaru.
7. No one who is not Pavel owes money to Hikaru.

Sentence 7 can be symbolized by any one of:

—dx(—x =p A0(x,h)),
Vx(=x =p — =0(x,h)),
Vx(0(x,h) — x = p).

Thus, we can symbolize sentence 5 as the conjunction of one of
the above with the symbolization of sentence 6, ‘O(p,%)’, or more
compactly using ‘<>’ as ‘Vx(0(x,h) & x = p)’.

8. Everyone except Pavel owes money to Hikaru.

Sentence 8 can be treated similarly, although now of course Pavel
does not owe Hikaru money. We can paraphrase it as ‘Every-
one who is not Pavel owes Hikaru money, and Pavel does not’.
Consequently, it can be symbolized as ‘Vx(—~x = p — 0(x,h)) A
=0(p,h)’, or more concisely, ‘Vx(—x = p < O(x,k))’. Other lo-
cutions akin to ‘except’ such as ‘but’ or ‘besides’ (as used in ‘no
one but Pavel’ or ‘someone besides Hikaru’) can be treated in
similar ways.

The above treatment of so-called “exceptives” is not uncon-
tentious. Some linguists think that sentence 8 does not entail
that Pavel doesn’t owe Hikaru money, and so the symbolization
should just be ‘Vx(-x =p — O(x,h))’. There are also uses of
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‘except’ that clearly do not have that entailment, especially in
mathematical writing. For instance, you may read in a calculus
textbook that “the function f is defined everywhere except pos-
sibly at a”. That means only that for every point x other than aq,
f is defined at x. It is not required that f is undefined at a; it’s
left open whether f is or is not defined at a.

26.3 There are at least. ..

We can also use identity to say how many things there are of a
particular kind. For example, consider these sentences:

9. There is at least one apple.
10. There are at least two apples.
11. There are at least three apples.

We will use the symbolization key:
A(x): x is an apple

Sentence g does not require identity. It can be adequately sym-
bolized by ‘3x A(x)’: There is an apple; perhaps many, but at
least one.

It might be tempting to also symbolize sentence 10 without
identity, namely as ‘Ix3y(A(x) A A(y))’. Roughly, this says that
there is some apple x in the domain and some apple y in the
domain. Since nothing precludes these from being one and the
same apple, this would be true even if there were only one apple.
In order to make sure that we are dealing with different apples,
we need the identity predicate. Sentence 10 needs to say that the
two apples that exist are not identical, so it can be symbolized
by ‘FxIy((A(x) A A()) A—x =y).

Sentence 11 requires talking about three different apples.
Now we need three existential quantifiers, and we need to make
sure that each will pick out something different:

FxTyFz[((A(X) AAP) ANAR)A((mx =yA-y=2)A-x =2)].
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Note that it is not enough to use ‘- x = y A =y = 2’ to symbolize
‘x, 9, and z are all different.” For that would be true if x and y
were different, but x = z. In general, to say that x1, ..., x, are
all different, we must have a conjunction of —x; = x; for every
different pair i and j.

26.4 There are at most...

Now consider these sentences:

12. There is at most one apple.
13. There are at most two apples.

Sentence 12 can be paraphrased as, ‘It is not the case that there
are at least fwo apples’. This is just the negation of sentence 10:

—3x3y[(A(x) A A(p)) A= x = y]

But sentence 12 can also be approached in another way. It means
that if you pick out an object and it’s an apple, and then you pick
out an object and it’s also an apple, you must have picked out the
same object both times. With this in mind, sentence 12 can also

be symbolized by:

VaVy[(A(x) A A(y)) — x = y]

The two sentences will turn out to be logically equivalent.

Similarly, sentence 13 can be approached in two equivalent
ways. It can be paraphrased as, ‘It is not the case that there are
three or more distinct apples’, so we can offer:

~TxBy3z[((A(x) AAD) AAD)A((~x = yA~x = 2) Ay = 2)]

Alternatively we can read it as saying that if you pick out an
apple, and an apple, and an apple, then you will have picked out
(at least) one of these objects more than once. Thus:

VxVsz[((A(x) NAW) NA(z) > ((x=yVx=2)Vy= z)]
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26.5 There are exactly...

We can now consider statements of exact numerical quantity, like:

14. There is exactly one apple.
15. There are exactly two apples.
16. There are exactly three apples.

Sentence 14 can be paraphrased as, “There is at least one apple
and there is at most one apple’. This is just the conjunction of
sentence g and sentence 12. So we can offer:

FxA(x) AVaVy[(A(x) A A()) — x = y]

But it is perhaps more straightforward to paraphrase sentence 14
as, “There is a thing x which is an apple, and everything which is
an apple is just x itself’. Thought of in this way, we offer:

3x[A(x) AVY(AQ) — x = )]

Similarly, sentence 15 may be paraphrased as, “There are at least
two apples, and there are at most two apples’. Thus we could
offer

JxTy((A(x) NA()) A—=x =) A

VaVyVz[((A(x) A A(p) AA(2) = (x=yVx=2)Vy=2)]
More efficiently, though, we can paraphrase it as “There are at

least two different apples, and every apple is one of those two
apples’. Then we offer:

FxTy[((A(x) A AD)) A=x =) AV2(A(2) = (x =2V y = 2))]
Finally, consider these sentences:

17. There are exactly two things.
18. There are exactly two objects.
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It might be tempting to add a predicate to our symbolization key;,
to symbolize the English predicate is a thing’ or is
an object’, but this is unnecessary. Words like ‘thing’ and ‘object’
do not sort wheat from chaff: they apply trivially to everything,
which is to say, they apply trivially to every thing. So we can
symbolize either sentence with either of the following:

JxIy-x =y A-3xFIz((mx =y A=y =2) A=x =2)
AxTy[-x =y AVz(x =2Vy=2z)|

Practice exercises

A. Consider the sentence,

19. Every officer except Pavel owes money to Hikaru.

3

Symbolize this sentence, using ‘F(x)’ for « is an officer’.
Are you confident that your symbolization is true if, and only if,
sentence 19 is true? What happens if every officer owes money
to Hikaru, Pavel does not, but Pavel isn’t an officer?

B. Explain why:

1. ‘IxVy(A(y) < x = y)’ is a good symbolization of ‘there is
exactly one apple’.

2. ‘Exﬂy[—‘x =yAVz2(4A(z) & (x =2Vy = z))]’ is a good
symbolization of ‘there are exactly two apples’.



CHAPTER 27

Sentences of
FOL

We know how to represent English sentences in FOL. The time
has finally come to define the notion of a sentence of FOL.

27.1 Expressions

There are six kinds of symbols in FOL:

1.

4.
5.
6.

Predicates: 4, B, C, ..., Z, or with subscripts, as needed:
A1, B, Z3, Ay, Ags, J375, - -

The identity symbol ‘=" counts as a special predicate.
Names: a, b, ¢, ..., r, or with subscripts, as needed: aj,
bags, h7, m3g, ...

Variables: s, ¢, u, v, w, x, y, z, or with subscripts, as
needed: x1, y1, 21, X2, ...

Connectives: -, A, V, —, &

Brackets: (,)

Quantifiers: V, 3

We define an EXPRESSION OF FOL as any string of symbols of
FOL. Take any of the symbols of FOL and write them down, in
any order, and you have an expression.

235
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27.2 Terms and formulas

In chapter 6, we went straight from the statement of the vocab-
ulary of TFL to the definition of a sentence of TFL. In FOL, we
will have to go via an intermediary stage: via the notion of a FOR-
MULA. The intuitive idea is that a formula is any sentence, or
anything which can be turned into a sentence by adding quan-
tifiers out front. But this intuitive idea will take some time to
unpack.
We start by defining the notion of a term.

A TERM is any name or any variable.

So, here are some terms:

a,b,x,x1,%9,9, 9254, 2

Next we need to define atomic formulas.

1. Any sentence letter is an atomic formula.

2. If R is an n-place predicate and 11,9,...,1, are terms,
then R (41,%9,...,1,) is an atomic formula.

3. If t1 and {9 are terms, then ¥; = {9 is an atomic formula.

4. Nothing else is an atomic formula.

Note that we consider sentence letters also formulas of FOL,
so every sentence of TFL is also a formula of FOL. In part VII, we
will again also allow the contradiction ‘L’ as an atomic formula.

The use of script letters here follows the conventions laid
down in chapter 8. So, ‘R’ is not itself a predicate of FOL. Rather,
it is a symbol of our metalanguage (augmented English) that we
use to talk about any predicate of FOL. Similarly, ‘41’ is not a term
of FOL, but a symbol of the metalanguage that we can use to talk
about any term of FOL. So, where ‘F’ is a one-place predicate,
‘G’ is a three-place predicate, and ‘S’ is a six-place predicate, here
are some atomic formulas:
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D F(a)

xX=a G(x,a,9)

a=25b G(a,a,a)

F(x) S(x1,%9,a,b,9,%1)

Once we know what atomic formulas are, we can offer recursion
clauses to define arbitrary formulas. The first few clauses are
exactly analogous to those in the definition of ‘sentence of TFL'.

NP @ P

9.

Every atomic formula is a formula.

If of is a formula, then -9 is a formula.

If of and % are formulas, then (f A 9B) is a formula.
If o and % are formulas, then (s V %) is a formula.
If f and 9% are formulas, then (f — ) is a formula.
If d and % are formulas, then (o < %) is a formula.
If o is a formula and « is a variable, then Vx o is a
formula.

If of is a formula and « is a variable, then Jx o is a
formula.

Nothing else is a formula.

So, assuming again that ‘F’ is a one-place predicate, ‘G’ is
a three-place predicate and ‘S’ is a six place-predicate, here are
some formulas you can build this way:

F(x)
G(a.y,2)
S(y,2,9,a,9,%)
(G(a.y.2) = 8(9.2.,a.,%))
Vz(G(a,y,z) > S(,2,9,a,9,%))
F(x) AVz2(G(a,y,2) = S(9,2,9,a,9,%))
Fy(F(x) AVz(G(a,y,2) = S(9,2,9,a,9,%)))
VxTy(F(x) AV2(G(a,p,2) = S(9,2,9,a,9,%)))

We can now give a formal definition of scope, which incorpo-
rates the definition of the scope of a quantifier. Here we follow
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the case of TFL, though we note that a logical operator can be
either a connective or a quantifier:

> The MAIN LOGICAL OPERATOR in a formula is the opera-
tor that was introduced most recently, when that formula
was constructed using the recursion rules.

> The scorE of a logical operator in a formula is the sub-
formula for which that operator is the main logical op-
erator.

So we can graphically illustrate the scope of the quantifiers in
the preceding example thus:

scope of ‘Vx’

scope of ‘3y’

scope of V2’

VxAy(F(x) & Vz(G(a,y,2) = S(,2,9,a,9,%)))

27.3 Sentences and free variables

Recall that we are largely concerned in logic with assertoric sen-
tences: sentences that can be either true or false. Many formulas
are not sentences. Consider the following symbolization key:

domain: people
L(x,y): x loves y
b: Boris

Consider the atomic formula ‘L(z,z)’. All atomic formulas are
formulas, so ‘L(z,z)’ is a formula, but can it be true or false?
You might think that it will be true just in case the person named
by ‘2’ loves themself, in the same way that ‘L(5,5)’ is true just in
case Boris (the person named by ‘4’) loves himself. However, %’
is a variable, and does not name anyone or any thing.
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Of course, if we put an existential quantifier out front, obtain-
ing ‘3z L(z,z)’, then this would be true iff someone loves them-
selves. Equally, if we wrote ‘Vz L(z,2)’, this would be true iff
everyone loves themselves. The point is that we need a quantifier
to tell us how to deal with a variable.

Let’s make this idea precise.

An occurrence of a variable « is BOUND iff it falls within
the scope of either V& or 3. An occurrence of a variable
which is not bound is FREE.

For example, consider the formula
(Vx(E(x) v D(y)) — Fz(E(x) — L(z,%)))

The scope of the universal quantifier ‘Vx’ is ‘Vx(E(x) vV D(y))’,
so the first ‘x” is bound by the universal quantifier. However, the
second and third occurrence of ‘x’ are free. Equally, the ‘y’ is
free. The scope of the existential quantifier ‘32’ is ‘Jz(E(x) —
L(z,x))’, so ‘z’ is bound.

Formulas that do not have free variables, i.e., every variable
is bound, are called SENTENCES. Only sentences can be true or
false.

A SENTENCE of FOL is any formula of FOL that contains
no free variables.

Note that in the formation rules given in section 27.2, specif-
ically in the clauses for V and 3, we did not require that the
variable @ in Yo o and 3o o does not already occur as a bound
variable in . So we allow, for instance, ‘Ix(Vx F(x) — G(x))’
as a sentence. We won’t be meeting such special cases often,
since we can always rename bound variables to obtain an equiv-
alent sentence that avoids such weirdness; in this case, e.g.,
‘Fx(Vy F(y) — G(x))’. But since it is allowed to happen, we
should clarify which quantifiers bind which variables: An occur-
rence of a bound variable is always bound by the quantifier with
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the same matching variable that is closest to it. By “closest” we
mean: it is the main logical operator of the smallest subformula
into the scope of which the occurrence of the variable falls. So in
our previous example, ‘Vx’ binds the occurrence of x in ‘F(x)’,
since it is the main logical operator of ‘Vx F(x)’. The ‘Vx’ does
not bind the ‘4’ in ‘G(x)’, however. The ‘Jx’ does not bind the
‘x> in ‘F(x)’, but it does bind the ‘x’ in ‘G (x)’.

The rules also do not require that the bound variable a ac-
tually occurs free in 9 (or even at all). So our rules also allow
‘Ax F(a)’ and ‘3xVx G(x)’ as formulas. In each case, the ‘Jx’
does not bind ‘x’, because ‘x’ does not occur free in ‘F(a)’ or
in ‘Vx G(x)’. In the former case, ‘x” does not occur at all; in the
latter, it is already bound by ‘Vx’. This is called vacuOUS QUAN-
TIFICATION. It rarely appears in practice, and isn’t harmful. The
two sentences are equivalent to the sentences without the ‘3x’,
ie, to ‘F(a)’ and Vx G(x)’.

27.4 Bracketing conventions

We will adopt the same notational conventions governing brack-
ets that we did for TFL (see chapter 6 and section 11.3.) First, we
may omit the outermost brackets of a formula. Second, we may
use square brackets, " and ', in place of brackets to increase
the readability of formulas.

Sentences of FOL used in our examples can become quite
cumbersome, and so we also introduce a convention to deal with
conjunctions and disjunctions of more than two sentences. We
stipulate that 41 A Ag A--- A A, and 41 V Ay V ---V A4, are to be
interpreted as, respectively:

(...(A1ANA) N~ NAy)
(...(41VAy)V---VA,)

In practice, this just means that you are allowed to leave out
parentheses in long conjunctions and disjunctions. But remember
that (unless they are the outermost parentheses of the sentence)
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you must still enclose the entire conjunction or disjunction in
parentheses. Also, you cannot mix conjunctions and disjunctions
with each other or with other connectives. So the following are
still not allowed, and would be ambiguous if they were:

AVBACAD
Bv(C—D

27.5 Superscripts on predicates

Above, we said that an n-place predicate followed by 7 terms is
an atomic formula. But there is a small issue with this definition:
the symbols we use for predicates do not, themselves, indicate
how many places the predicate has. Indeed, in some places in
this book, we have used the letter ‘G’ as a one-place predicate;
in other places we have used it as a three-place predicate. So,
unless we state explicitly whether we want to use ‘G’ as a one-
place predicate or as a three place predicate, it is indeterminate
whether ‘G(a)’ is an atomic formula or not.

There is an easy way to avoid this, which many books adopt.
Instead of saying that our predicates are just capital letters (with
numerical subscripts as necessary), we could say that they are
capital letters with numerical superscripts (and with numerical sub-
scripts as necessary). The purpose of the superscript would be
to say explicitly how many places the predicate has. On this ap-
proach, ‘G1> would be a one-place predicate, and ‘G* would be
an (entirely different) three places predicate. They would need
to have different entries in any symbolisation key. And ‘G'(a)’
would be an atomic formula, whereas ‘G3(a)’ would not; likewise
‘G3(a,b,c)’ would be an atomic formula, and ‘G'(a,b,¢)’ would
not.

So, we could add superscripts to all our predicates. This would
have the advantage of making certain things completely explicit.
However, it would have the disadvantage of making our formulas
much harder to read; the superscripts would distract the eye.
So, we will not bother to make this change. Our predicates will
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remain without superscripts. (And, in practice, any book which
includes superscripts almost immediately stops including them!)

However, this leaves open a possibility of ambiguity. So, when
any ambiguity could arise—in practice, very rarely—you should
say, explicitly, how many places your predicate(s) have.

Practice exercises

A. Identify which variables are bound and which are free.

Jx L(x,y) AVy L(y,x)

Vx A(x) A B(x)

Vx(A(x) A B(x)) AVy(C(x) A D())
VxTy[R(x,y) = (J(2) AK(x))] vV R(y,x)
Va1 (M (xg) e L(xg,%1)) A Ixg L(x3,x9)

ANl ol



CHAPTER 28

Definite
descriptions

Consider sentences like:

1. Nick is the traitor.
2. The traitor went to Cambridge.
3. The traitor is the deputy.

These are definite descriptions: they are meant to pick out a
unique object. They should be contrasted with indefinite descrip-
tions, such as ‘Nick is a traitor’. They should equally be con-
trasted with generics, such as ‘The whale is a mammal’ (when it’s
inappropriate to ask which whale). The question we face is: How
should we deal with definite descriptions in FOL?

28.1 Treating definite descriptions as terms

One option would be to introduce new names whenever we come
across a definite description. This is probably not a great idea.
We know that the traito—whoever it is—is indeed a traitor. We
want to preserve that information in our symbolization.

A second option would be to use a new definite description
operator, such as ‘2’. The idea would be to symbolize ‘the F’ as

243
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‘% F(x)’ (think ‘the x such that F(x)’); or to symbolize ‘the G’
as ‘2x G(x)’, etc. Expressions of the form 1 of(x) would then
behave like names. If we were to follow this path, we could use
the following symbolization key:

domain: people

T (x): x is a traitor

D(x): x is a deputy

C(x): x went to Cambridge
n: Nick

Then, we could symbolize sentence 1 with ‘n = 1x T'(x)’, sen-
tence 2 with ‘C(2x T(x))’, and sentence 3 with ‘i 7T(x) =
1x D(x)’.

However, it would be nice if we didn’t have to add a new
symbol to FOL. And we might be able to make do without one.

28.2 Russell’s analysis

Bertrand Russell offered an analysis of definite descriptions. Very
briefly put, he observed that, when we say ‘the F’ in the context of
a definite description, our aim is to pick out the one and only thing
that is /' (in the appropriate context). Thus Russell analyzed the
notion of a definite description as follows:"

The F is G iff

> there is at least one F, and
> there is at most one F, and
> every F is G.

Note a very important feature of this analysis: ke’ does not
appear on the right-side of the equivalence. Russell is aiming to pro-

!Bertrand Russell, “On denoting”, Mind 14 (1905), pp. 479-93; also Rus-
sell, Introduction to Mathematical Philosophy, 1919, London: Allen and Unwin,
ch. 16.



CHAPTER 28. DEFINITE DESCRIPTIONS 245

vide an understanding of definite descriptions in terms that do
not presuppose them.

Now, one might worry that we can say ‘the table is brown’
without implying that there is one and only one table in the uni-
verse. But this is not (yet) a fantastic counterexample to Russell’s
analysis. The domain of discourse is likely to be restricted by
context (e.g., to salient objects in my vicinity).

If we accept Russell’s analysis of definite descriptions, then
we can symbolize sentences of the form ‘the F is G’ using our
strategy for numerical quantification in FOL. After all, we can
deal with the three conjuncts on the right-hand side of Russell’s
analysis as follows:

JxF(x) AVxVY((F(x) A F(p)) = x =y) AVx(F(x) — G(x))

In fact, we could express the same point rather more crisply, by
recognizing that the first two conjuncts just amount to the claim
that there is exactly one F, and that the last conjunct tells us that
that object is G. So, equivalently, we could offer:

Elx[(F(x) AVY(F(y) = x=9)) A G(x)]

Using these sorts of techniques, we can now symbolize sen-
tences 1 to 3 without using any new-fangled fancy operator, such
as 7.

Sentence 1 is exactly like the examples we have just consid-
ered. So we would symbolize it by

Hx[T(x) AVY(T () =2 x=9y)Ax = n]
Sentence 2 poses no problems either:
Hx[T(x) AVY(T(y) = x=9y) A C(x)].

Sentence 3 is a little trickier, because it links two definite descrip-
tions. But, deploying Russell’s analysis, it can be paraphrased by
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‘there is exactly one traitor, x, and there is exactly one deputy, ,
and x = y’. So we can symbolize it by:

ATy ([T (x) AV2(T(2) > x = 2)| A
[D(y) AVz(D(z) » y = z)] Ax=Yy)

Note that the formula ‘x = »’ must fall within the scope of both
quantifiers!

28.3 Empty definite descriptions

One of the nice features of Russell’s analysis is that it allows us
to handle empty definite descriptions neatly.

France has no king at present. Now, if we were to introduce
a name, ‘k’, to name the present King of France, then everything
would go wrong: remember from chapter 23 that a name must al-
ways pick out some object in the domain, and whatever we choose
as our domain, it will contain no present kings of France.

Russell’s analysis neatly avoids this problem. Russell tells us
to treat definite descriptions using predicates and quantifiers, in-
stead of names. Since predicates can be empty (see chapter 24),
this means that no difficulty now arises when the definite descrip-
tion is empty.

Indeed, Russell’s analysis helpfully highlights two ways to go
wrong in a claim involving a definite description. To adapt an
example from Stephen Neale” suppose Alex claims:

4. I am dating the present king of France.

Using the following symbolization key:

a: Alex
K(x): x is a present king of France
D(x,y): x 1s dating y

*Stephen Neale, Descriptions, MIT Press, 19go.
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(Note that the symbolization key speaks of a present King of
France, not the present King of France; i.e., it employs an indef-
inite, rather than a definite, description.) Sentence 4 would be
symbolized by ‘EIx[(K(x) AVY(K(y) = x=9)) A D(a,x)]’. Now,
this can be false in (at least) two ways, corresponding to these
two different sentences:

5. There is no one who is both the present King of France and
such that he and Alex are dating.

6. There is a unique present King of France, but Alex is not
dating him.

Sentence 5 might be paraphrased by ‘It is not the case that: the
present King of France and Alex are dating’. It will then be sym-
bolized by ‘—EIx[(K(x) AVY(K(y) — x =9)) A D(a,x)]’. We
might call this outer negation, since the negation governs the en-
tire sentence. Note that the sentence is true if there is no present
King of France.

Sentence 6 can be symbolized by ‘EIx[(K(x) AVy(K(y) —
x=19)A —|D(a,x)]’. We might call this inner negation, since
the negation occurs within the scope of the definite description.
Note that its truth requires that there is a present King of France,
albeit one who is not dating Alex. Sentence 6 entails sentence 5
(as do their symbolizations), but not vice versa.

28.4 Possessives, ‘both’, ‘neither’

We can use Russell’s analysis of definite descriptions also to deal
with singular possessive constructions in English. For instance,
‘Smith’s murderer’ means something like ‘the person who mur-
dered Smith’, i.e., it is a disguised definite description. On Rus-
sell’s analysis, the sentence

7. Smith’s murderer is insane.

can be false in one of three ways. It can be false because the one
person who murdered Smith is not, in fact, insane. But it can
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also be false if the definite description is empty, namely if either
no-one murdered Smith (e.g., if Smith met with an unfortunate
accident) or if more than one person murdered Smith.

To symbolize sentences containing singular possessives such
as ‘Smith’s murderer’ you should paraphrase them using an ex-
plicit definite description, e.g., “The person who murdered Smith
is insane’ and then symbolize it according to Russell’s analysis.
In our case, we would use the symbolization key:

Domain: people

I(x): « is insane
M(x,y): x murdered y
m: Smith

Our symbolization then reads, ‘Ix [M(x,m) AVy(M(y,m) — x =
AL

Two other determiners that we can extend Russell’s analysis
to are ‘both’ and ‘neither’. To say ‘both Fs are G’ is to say that
there are exactly two F's, and each of them is G. To say that
‘neither F is G’, is to also say that there are exactly two F's, and
neither of them is G. In FOL, the symbolizations would read,
respectively,

AxTy[F(x) AF(Q) A=x =y A
Vz2(F(z) > (x =2Vy=2)) AG(x) A G(y)]
IxTy[F(x) AF)A=x =y A
Vz(F(z) = (x =2V y=2)) AG(x) A —|G(y)]
Compare these symbolizations with the symbolizations of ‘ex-
actly two F's are Gs’ from section 26.5, i.e., of ‘there are exactly
two things that are both /" and G’
IxTy[(F(x) AGx) A (FO)AGH)) A=x=yA
VZ((F(2) A G(2)) > (x = 2V y = 2))]

The difference between the symbolization of this and that of ‘both
Fs are G5’ lies in the antecedent of the conditional. For ‘exactly



CHAPTER 28. DEFINITE DESCRIPTIONS 249

two Fs are Gs’, we only require that there are no Fs that are
also Gs other than x and y, whereas for ‘both Fs are Gs’, there
cannot be any F's, whether they are Gs or not, other than x and y.
In other words, ‘both Fs are Gs’ implies that exactly two F's
are Gs. However, ‘exactly two Fs are Gs’ does not imply that
both F's are Gs (there might be a third /* which isn’t a G).

28.5 The adequacy of Russell’s analysis

How good is Russell’s analysis of definite descriptions? This ques-
tion has generated a substantial philosophical literature, but we
will restrict ourselves to two observations.

One worry focusses on Russell’s treatment of empty definite
descriptions. If there are no Fs, then on Russell’s analysis, both
‘the F is G’ and ‘the F is non-G’ are false. P. F. Strawson sug-
gested that such sentences should not be regarded as false, ex-
actly, but involve presupposition failure, and so need to be treated
as neither true nor false.3

If we agree with Strawson here, we will need to revise our
logic. For, in our logic, there are only two truth values (True and
False), and every sentence is assigned exactly one of these truth
values.

But there is room to disagree with Strawson. Strawson is ap-
pealing to some linguistic intuitions, but it is not clear that they
are very robust. For example: isn’t it just false, not ‘gappy’, that
Tim is dating the present King of France?

Keith Donnellan raised a second sort of worry, which (very
roughly) can be brought out by thinking about a case of mistaken
identity.* Two men stand in the corner: a very tall man drinking
what looks like a gin martini; and a very short man drinking what
looks like a pint of water. Seeing them, Malika says:

8. The gin-drinker is very tall!

3P. F. Strawson, “On referring”, Mind 59 (1950), pp. 320-34.
4Keith Donnellan, “Reference and definite descriptions”, Philosophical Re-
view 77 (1966), pp. 281-304.
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Russell’s analysis will have us render Malika’s sentence as:

8. There is exactly one gin-drinker [in the corner]|, and who-
ever is a gin-drinker [in the corner] is very tall.

Now suppose that the very tall man is actually drinking water
from a martini glass; whereas the very short man is drinking a
pint of (neat) gin. By Russell’s analysis, Malika has said some-
thing false, but don’t we want to say that Malika has said some-
thing true?

Again, one might wonder how clear our intuitions are on this
case. We can all agree that Malika intended to pick out a partic-
ular man, and say something true of him (that he was tall). On
Russell’s analysis, she actually picked out a different man (the
short one), and consequently said something false of him. But
maybe advocates of Russell’s analysis only need to explain why
Malika’s intentions were frustrated, and so why she said some-
thing false. This is easy enough to do: Malika said something
false because she had false beliefs about the men’s drinks; if Ma-
lika’s beliefs about the drinks had been true, then she would have
said something true.’

To say much more here would lead us into deep philosophical
waters. That would be no bad thing, but for now it would distract
us from the immediate purpose of learning formal logic. So, for
now, we will stick with Russell’s analysis of definite descriptions,
when it comes to putting things into FOL. It is certainly the best
that we can offer, without significantly revising our logic, and it
is quite defensible as an analysis.

Practice exercises

A. Using the following symbolization key:

SInterested parties should read Saul Kripke, “Speaker reference and seman-
tic reference”, in: French et al. (eds.), Contemporary Perspectives in the Philosophy
of Language, University of Minnesota Press, 1977, pp. 6—27.
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domain: people

K(x): x knows the combination to the safe
S(x): x 1s a spy
V(x): x is a vegetarian
T (x,9): x trusts y
h: Hofthor
i: Ingmar

symbolize the following sentences in FOL:

1. Hofthor trusts a vegetarian.

2. Everyone who trusts Ingmar trusts a vegetarian.

3. Everyone who trusts Ingmar trusts someone who trusts a
vegetarian.

4. Only Ingmar knows the combination to the safe.

5. Ingmar trusts Hofthor, but no one else.

6. The person who knows the combination to the safe is a
vegetarian.

7. The person who knows the combination to the safe is not

a spy.
B. Using the following symbolization key:

domain: cards in a standard deck

B(x): x is black

C(x): x is a club

D(x): x is a deuce

J(x): x 1s a jack

M(x): x is a man with an axe
O(x): x is one-eyed

W(x): x is wild

symbolize each sentence in FOL:

1. All clubs are black cards.

2. There are no wild cards.

3. There are at least two clubs.

4. There is more than one one-eyed jack.
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There are at most two one-eyed jacks.

There are two black jacks.

There are four deuces.

The deuce of clubs is a black card.

One-eyed jacks and the man with the axe are wild.

10. If the deuce of clubs is wild, then there is exactly one wild
card.

11. The man with the axe is not a jack.

12. The deuce of clubs is not the man with the axe.

L XN o¢x

C. Using the following symbolization key:

domain: animals in the world

B(x): x is in Farmer Brown’s field
H(x): x is a horse

P(x): x is a Pegasus

W(x): x has wings

symbolize the following sentences in FOL:

There are at least three horses in the world.

There are at least three animals in the world.

There is more than one horse in Farmer Brown’s field.
There are three horses in Farmer Brown’s field.

AN Lo S

There is a single winged creature in Farmer Brown’s field;
any other creatures in the field must be wingless.

The Pegasus is a winged horse.

7. The animal in Farmer Brown’s field is not a horse.

8. The horse in Farmer Brown’s field does not have wings.

&

D. In this chapter, we symbolized ‘Nick is the traitor’ by
‘Fx(T(x) AVy(T'(y) — x = y) A x = n)’. Explain why these
would be equally good symbolisations:

> T'(n) AVY(T(y) > n=y)
> Vy(T(y) & y=n)



Ambiguity

In chapter 7 we discussed the fact that sentences of English can be
ambiguous, and pointed out that sentences of TFL are not. One
important application of this fact is that the structural ambigu-
ity of English sentences can often, and usefully, be straightened
out using different symbolizations. One common source of am-
biguity is scope ambiguity, where the English sentence does not
make it clear which logical word is supposed to be in the scope
of which other. Multiple interpretations are possible. In FOL, ev-
ery connective and quantifier has a well-determined scope, and
so whether or not one of them occurs in the scope of another in
a given sentence of FOL is always determined.
For instance, consider the English idiom,

1. Everything that glitters is not gold.

If we think of this sentence as of the form ‘every F is not G’ where
F(x) symbolizes x glitters’ and G (x) is x is gold’, we
would symbolize it as:

Vx(F(x) = =G(x))

In other words, we symbolize it the same way as we would ‘Noth-
ing that glitters is gold’. But the idiom does not mean that! It
means that one should not assume that just because something
glitters, it is gold; not everything that appears valuable is in fact

253
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valuable. To capture the actual meaning of the idiom, we would
have to symbolize it instead as we would ‘Not everything that
glitters is gold’, i.e., in the following way:

=VYx(F(x) — G(x))

Compare this with the previous symbolization: again we see that
the difference in the two meanings of the ambiguous sentence lies
in whether the ‘=’ is in the scope of the ‘¥’ (in the first symbol-
ization) or ‘V’ is in the scope of ‘=’ (in the second).

Of course we can alternatively symbolize the two readings
using existential quantifiers as well:

—3Ax(F(x) A G(x))
Ax(F(x) A =~G(x))

In chapter 24 we discussed how to symbolize sentences in-
volving ‘only’. Consider the sentence:

2. Only young cats are playful.

According to our schema, we would symbolize it this way:
Vx(P(x) = (Y(x) A C(x)))

The meaning of this sentence of FOL is something like, ‘If an
animal is playful, it is a young cat’. (Assuming that the domain
is animals, of course.) This is probably not what’s intended in
uttering sentence 2, however. It’s more likely that we want to say
that old cats are not playful. In other words, what we mean to say
is that if something is a cat and playful, it must be young. This
would be symbolized as:

Vx((C(x) A P(x)) = Y (x))

There is even a third reading! Suppose we’re talking about young
animals and their characteristics. And suppose you wanted to say
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that of all the young animals, only the cats are playful. You could
symbolize this reading as:

Vx((Y(x) A P(x)) = C(x))

Each of the last two readings can be made salient in English by
placing the stress appropriately. For instance, to suggest the last
reading, you would say ‘Only young cats are playful’, and to get
the other reading you would say ‘Only young cats are playful’.
The very first reading can be indicate by stressing both ‘young’
and ‘cats’: ‘Only young cats are playful’ (but not old cats, or dogs
of any age).

In sections 25.3 and 25.5 we discussed the importance of the
order of quantifiers. This is relevant here because, in English,
the order of quantifiers is sometimes not completely determined.
When both universal (‘all’) and existential (‘some’, ‘a’) quantifiers
are involved, this can result in scope ambiguities. Consider:

3. Everyone went to see a movie.

This sentence is ambiguous. In one interpretation, it means that
there is a single movie that everyone went to see. In the other,
it means that everyone went to see some movie or other, but not
necessarily the same one. The two readings can be symbolized,
respectively, by

3x(M(x) AVy(P(y) = §(9,%)))
Vy(P(y) = 3x(M(x) A S(y.%)))

We assume here that the domain contains (at least) people and
movies, and the following symbolization key:

P(y): » is a person
M(x): x 1S a movie
S(y,x): » went to see x

In the first reading, we say that the existential quantifier has wide
scope (and its scope contains the universal quantifier, which has
narrow scope), and the other way round in the second.
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In chapter 28, we encountered another scope ambiguity, aris-
ing from definite descriptions interacting with negation. Con-
sider Russell’s own example:

4. The King of France is not bald.

If the definite description has wide scope, and we are interpreting
the ‘not’ as an ‘inner’ negation (as we said before), sentence 4 is
interpreted to assert the existence of a single King of France,
to whom we are ascribing non-baldness. In this reading, it is
symbolized as ‘Ix [K(x) AVY(K(y) > x=9) A —-B(x)]’. In the
other reading, the ‘not’ denies the sentence “The King of France is
bald’, and we would symbolize it as: ‘=3x [K(x) AVy(K(y) — x =
) A B(x)] ’. In the first case, we say that the definite description
has wide scope and in the second that it has narrow scope.

Practice exercises

A. Each of the following sentences is ambiguous. Provide a sym-
bolization key for each, and symbolize all readings.

1. No one likes a quitter.
2. CSI found only red hair at the scene.
3. Smith’s murderer hasn’t been arrested.

B. Russell gave the following example in his paper ‘On Denoting’:

I have heard of a touchy owner of a yacht to whom
a guest, on first seeing it, remarked, ‘I thought your
yacht was larger than it is’; and the owner replied,
‘No, my yacht is not larger than it is’.

Explain what’s going on.
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CHAPTER 30

Extensionality

Recall that TFL is a truth-functional logic. Its connectives are all
truth-functional, and a/l that we can do with TFL is key sentences
to particular truth values. We can do this directly. For example,
we might stipulate that the TFL sentence ‘P’ is to be true. Al-
ternatively, we can do this indirectly, offering a symbolization key,

e.g.
P: Big Ben is in London.
But recall from chapter 10 that this is just a means of specify-

ing ‘P’s truth value; the symbolization key statement amounts to
something like the following stipulation:

> The TFL sentence ‘P’ is true iff Big Ben is in London.

And we emphasized in chapter 10 that TFL cannot handle differ-
ences in meaning that go beyond mere differences in truth value.

30.1 Symbolizing versus translating

FOL has some similar limitations. It gets beyond mere truth val-
ues, since it enables us to split up sentences into terms, predicates
and quantifiers. This enables us to consider what is frue of a par-
ticular object, or of some or all objects. But that’ it.

To unpack this a bit, consider this symbolization key:

258
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C(x): x teaches Logic III in Calgary

This stipulation does not carry the meaning of the English pred-
icate across into our FOL predicate. We are simply stipulating
something like this:

> ‘C(x)” and * x teaches Logic III in Calgary’ are to be
true of exactly the same things.

So, in particular:

> ‘C(x)’is to be true of exactly those things which teach Logic
IIT in Calgary (whatever those things might be).

This is an indirect way of stipulating which things a predicate is
true of.

Alternatively, we can stipulate predicate extensions directly.
For example, we can stipulate that ‘C(x)’ is to be true of Richard
Zach, and Richard Zach alone. As it happens, this direct stipula-
tion would have the same effect as the indirect stipulation, since
Richard, and Richard alone, teaches Logic III in Calgary. Note,
however, that the English predicates ¢ is Richard Zach’ and
¢ teaches Logic III in Calgary’ have very different meanings!

The point is that FOL has no resources for dealing with nu-
ances of meaning. When we interpret FOL, all we are considering
is what the predicates are true of, regardless of whether we spec-
ify these things directly or indirectly. The things a predicate is
true of are known as the EXTENSION of that predicate. We say that
FOL is an EXTENSIONAL LANGUAGE because FOL does not rep-
resent differences of meaning between predicates that have the
same extension.

This is why we speak of symbolizing English sentences in FOL.
If translation has to preserve meaning, it is clear that we are not
translating English into FOL.
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30.2 Extensions

We can stipulate directly what predicates are to be true of. And
our stipulations can be as arbitrary as we like. For example, we
could stipulate that ‘H (x)’ should be true of, and only of, the
following objects:

> Aristotle
> the number 7
> every top-F key on every piano ever made

Armed with this interpretation of ‘H (x)’, suppose we now add to
our symbolization key:

a: Aristotle
h: Hypatia
p: the number n

Then ‘H(a)’ and ‘H(p)’ will both be true, on this interpretation,
but ‘H (%)’ will be false, since Hypatia was not among the stipu-
lated objects.

This process of explicit stipulation is sometimes described as
stipulating the extension of a predicate. Note that, in the stipula-
tion we just gave, the objects we listed have nothing particularly in
common. This doesn’t matter. Logic doesn’t care about what we
humans (at a particular moment) think ‘naturally goes together’;
to logic, all objects are on an equal footing.

Any well-defined collection of objects is a potential extension
of a one-place predicate. The example above shows one way of
stipulating the extension of ‘H (x)’ by enumeration, i.e., we simply
list the objects in the extension of ‘H(x)’. We can also stipulate
the extension, as we have also already seen, by giving an English
predicate, such as ¢ x teaches Logic IIT at Calgary’ or ¢ x
is an even integer between 3 and 9’. The latter would specify an
extension consisting of, and only of, 4, 6, and 8.

Note that some predicates of English, such as x is a
round square’, are not true of anything. In this case we say the ex-
tension of the predicate is empty. We do allow empty extensions,

<
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and we can stipulate that the extension of ‘H (x)’ is to be empty
simply by not listing any members. (It may be odd to consider
collections of no things, but logic is odd this way sometimes.)

30.3 Many-place predicates

All of this is quite easy to understand when it comes to one-
place predicates, but it gets messier when we deal with two-place
predicates. Consider a symbolization key like:

L(x,y): x loves »

Given what we said above, this symbolization key should be read
as saying:

> ‘L(x,y)’ and ¢ x loves , are to be true of exactly
the same things.

So, in particular:
> ‘L(x,y) is to be true of x and y (in that order) iff x loves y.

It is important that we insist upon the order here, since love—
famously—is not always reciprocated. (Note that ‘x’ and ‘y’ on
the right here are symbols of augmented English, and that they
are being used. By contrast, ‘x” and ‘y’ in ‘L(x,y)’ are symbols of
FOL, and they are being mentioned.)

That is an indirect stipulation. What about a direct stipula-
tion? This is also tricky. If we simply list objects that fall un-
der ‘L(x,y)’, we will not know whether they are the lover or the
beloved (or both). We have to find a way to include the order in
our explicit stipulation.

To do this, we can specify that two-place predicates are true
of pairs of objects, where the order of the pair is important. Thus
we might stipulate that ‘B(x,y)’ is to be true of, and only of, the
following pairs of objects:

> (Lenin, Marx)



CHAPTER 30. EXTENSIONALITY 262

> (de Beauvoir, Sartre)
> (Sartre, de Beauvoir)

Here the angle-brackets keep us informed concerning order. Sup-
pose we now add the following stipulations:

[: Lenin
m: Marx
b: de Beauvoir
r: Sartre

Then ‘B(l,m)’ will be true, since (Lenin, Marx) is in our explicit
list, but ‘B(m,[)’ will be false, since (Marx, Lenin) is not in our
list. However, both ‘B(b,7)’ and ‘B(r,b)’ will be true, since both
(de Beauvoir, Sartre) and (Sartre, de Beauvoir) are in our explicit
list.

To make these ideas more precise, we would need to develop
some very elementary set theory. Set theory has formal apparatus
which allows us to deal with extensions, ordered pairs, and so
forth. However, set theory is not covered in this book. So I shall
leave these ideas at an imprecise level. Nevertheless, the general
idea should be clear.

30.4 Semantics for identity

Identity is a special predicate of FOL. We write it a bit differently
than other two-place predicates: ‘x = y’ instead of ‘/(x,y)’ (for
example). More important, though, is that its interpretation is
fixed, once and for all.

If two names refer to the same object, then swapping one
name for another will not change the truth value of any sentence.
So, in particular, if ‘e’ and ‘4’ name the same object, then all of
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the following will be true:

A(a) < A(b)
B(a) < B(b)
R(a,a) & R(b,b)
R(a,a) < R(a,b)
R(c,a) © R(c,b)
VxR(x,a) & Vx R(x,b)

Some philosophers have believed the reverse of this claim. That
is, they have believed that when exactly the same sentences (not
containing ‘=’) are true of x and y, then x and y are the very
same object. This is a highly controversial philosophical claim—
sometimes called the identity of indiscernibles—and our logic will
not subscribe to it; we allow that exactly the same things might
be true of two distinct objects.
To bring this out, consider the following interpretation:

domain: P. D. Magnus, Tim Button
a: P. D. Magnus
b: Tim Button
R(x1,...,%,): For every primitive predicate R we care to con-
sider, that predicate is true of nothing.

Suppose ‘4’ is a one-place predicate; then ‘A(a)’ is false and
‘A(b) is false, so ‘A(a) < A(b)’ is true. Similarly, if ‘R’ is a
two-place predicate, then ‘R(a,a)’ is false and ‘R(a,b)’ is false,
so that ‘R(a,a) < R(a,b)’ is true. And so it goes: every atomic
sentence not involving ‘=’ is false, so every biconditional linking
such sentences is true. For all that, Tim Button and P. D. Magnus
are two distinct people, not one and the same!
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30.5 Interpretations

We defined a vALUATION in TFL as any assignment of truth and
falsity to sentence letters. In FOL, we are going to define an
INTERPRETATION as consisting of four things:*

1. the specification of a non-empty domain;

2. each sentence letter we care to consider is assigned a truth
value;

3. each name that we care to consider is assigned exactly one
object within the domain (its REFERENT);

4. for each predicate that we care to consider (apart from ‘=),
a specification of what things (in what order) the predicate
is to be true of (its EXTENSION).

For one-place predicates, extensions are collections of objects
from the domain of which the predicate is true, for two-place
predicates they are ordered pairs of objects, etc.

We don’t need to specify anything for ‘=, since it has a fixed
meaning, namely that of identity. Everything is identical to itself,
and only to itself.

The symbolization keys that we considered in part V conse-
quently give us one very convenient way to present an interpreta-
tion. We will continue to use them in this chapter. Following the
discussion of section 30.2, we now also allow extensions specified
by enumerations on the right side, e.g.,

domain: philosophers, numbers
H (x): Aristotle, Hypatia, 7

is a perfectly good way of specifying an interpretation, as is

domain: 0, 1, 2
L(x,): 0,1), €0, 2), (1, 2)

We could have specified the same extension (on this particular do-

M

main) by giving the English predicate x is less than 5

!Interpretations are also often called “models” or “structures.”
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However, it is sometimes also convenient to present an inter-
pretation diagrammatically. To illustrate (literally): suppose we
want to consider just a single two-place predicate, ‘R(x,y)’. Then
we can represent it just by drawing an arrow between two ob-
jects, and stipulate that ‘R(x,y)’ is to hold of x and y iff there is
an arrow running from x to y in our diagram. As an example,

we might offer:
1 2
4 3

This diagram could be used to describe an interpretation whose
domain is the first four positive whole numbers, and which inter-
prets ‘R(x,y)’ as being true of and only of:

|

|

1, 2),(2,3), (3,4), (4, 1), (1, 3)

Equally we might offer this diagram:

@ 9

4t——37)

The interpretation specified by this diagram can also be given
by listing what’s in the domain and in the extension of ‘R(x,y)”:

domain: 1, 2, 3, 4
R(x,9): (1, 3), (3, 1), (3, 4), (1, 1), (3, 3)
If we wanted, we could make our diagrams more complex. For

example, we could add names as labels for particular objects.
Equally, to symbolize the extension of a one-place predicate, we
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might simply draw a circle around some particular objects and
stipulate that the thus encircled objects (and only them) are to fall
under the predicate ‘H(x)’, say. To specify multiple predicates
we could use colored (or dashed, dotted) lines for arrows and
circles.



CHAPTER 31

Truth in FOL

We have introduced you to interpretations. Since, among other
things, they tell us which predicates are true of which objects, they
will provide us with an account of the truth of atomic sentences.
However, we now need to say, precisely, what it is for an arbitrary
FOL sentence to be true or false in an interpretation.

We know from chapter 27 that there are three kinds of sen-
tence in FOL:

1. atomic sentences,

2. sentences whose main logical operator is a sentential con-
nective,

3. sentences whose main logical operator is a quantifier.

We need to explain truth for all three kinds of sentence.

We will provide a completely general explanation in this sec-
tion. However, to try to keep the explanation comprehensible,
we will, at several points, use the following interpretation:

domain: all people born before 2000 CE
a: Aristotle

b: Beyoncé
P(x): x is a philosopher
R(x,y): x was born before P

This will be our go-to example in what follows.

267
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31.1 Atomic sentences

The truth of atomic sentences should be fairly straightforward.
For sentence letters, the interpretation specifies if they are true
or false. The sentence ‘P(a)’ should be true just in case ‘P(x)’ is
true of ‘a’. Given our go-to interpretation, this is true iff Aristotle
is a philosopher. Aristotle is a philosopher. So the sentence is
true. Equally, ‘P(5)’ is false on our go-to interpretation.

Likewise, on this interpretation, ‘R(a,b)’ is true iff the object
named by ‘@’ was born before the object named by ‘4. Well,
Aristotle was born before Beyoncé. So ‘R(a,b)’ is true. Equally,
‘R(a,a)’ is false: Aristotle was not born before Aristotle.

Dealing with atomic sentences, then, is very intuitive. When
R is an n-place predicate and «1, @9, ..., @, are names,

The sentence R(w1,@g,...,a¢,) is true in an interpreta-
tion iff R is true of the objects named by @1, a9, ..., @,
(in that order) in that interpretation.

Recall, though, that there is a special kind of atomic sentence:
two names connected by an identity sign constitute an atomic
sentence. This kind of atomic sentence is also easy to handle.
Where « and ¢ are any names,

« = G is true in an interpretation iff « and ¢ name the
very same object in that interpretation.

So in our go-to interpretation, ‘a = &’ is false, since Aristotle
is distinct from Beyoncé.

31.2 Sentential connectives

We saw in chapter 27 that FOL sentences can be built up from
simpler ones using the truth-functional connectives that were fa-
miliar from TFL. The rules governing these truth-functional con-
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nectives are exactly the same as they were when we considered
TFL. Here they are:

> 9 AR is true in an interpretation iff both d is true and
R is true in that interpretation.

> 9 vV R is true in an interpretation iff either o is true or
R is true in that interpretation.

> —d is true in an interpretation iff of is false in that in-
terpretation.

> 9 — 9B is true in an interpretation iff either of is false
or A is true in that interpretation.

> 9 < R is true in an interpretation iff o has the same
truth value as 9 in that interpretation.

This presents the very same information as the characteristic
truth tables for the connectives; it just does so in a slightly differ-
ent way. Some examples will probably help to illustrate the idea.
(Make sure you understand them!) On our go-to interpretation:

v

‘a=aA P(a) is true.

> ‘R(a,b) N P(b)’ is false because, although ‘R(a,b)’ is true,
‘P(b) is false.

> ‘a=0bV P(a) is true.

> ‘=g = b’ is true.

> ‘P(a) AN—(a = b A R(a,b)) is true, because ‘P(a)’ is true

and ‘a = b’ is false.

Make sure you understand these examples.
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31.3 When the main logical operator is a
quantifier

The exciting innovation in FOL, though, is the use of guantifiers,
but expressing the truth conditions for quantified sentences is a
bit more fiddly than one might first expect.

Here is a naive first thought. We want to say that ‘Vx F(x)’ is
true iff ‘F(x)’ is true of everything in the domain. This should
not be too problematic: our interpretation will specify directly
what ‘F(x)’ is true of.

Unfortunately, this naive thought is not general enough. For
example, we want to be able to say that ‘Vx3y L(x,y)’ is true
just in case (speaking roughly) ‘Jy L(x,y)’ is true of everything
in the domain. But our interpretation does not directly specify
what ‘dy L(x,y)’ is true of. Instead, whether or not this is true
of something should follow just from the interpretation of the
predicate ‘L’, the domain, and the meanings of the quantifiers.

So here is a second naive thought. We might try to say that
‘Vx3y L(x,y)’ is to be true in an interpretation iff 3y L(w,y) is
true for every name « that we have included in our interpretation.
Similarly, we might try to say that 3y L(-w,y) is true just in case
L(w,6) is true for some name 6 that we have included in our
interpretation.

Unfortunately, this is not right either. To see this, observe
that our go-to interpretation only interprets {wo names, ‘a’ and
‘6’. But the domain—all people born before the year 2000 CE—
contains many more than two people. (And we have no intention
of trying to correct for this by naming all of them!)

So here is a third thought. (And this thought is not naive, but
correct.) Although it is not the case that we have named everyone,
each person could have been given a name. So we should focus
on this possibility of extending an interpretation by adding a new
name. We will offer a few examples of how this might work,
centering on our go-to interpretation, and we will then present
the formal definition.
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In our go-to interpretation, ‘Ix R(b,x)’ should be true. After
all, in the domain, there is certainly someone who was born after
Beyoncé. Lady Gaga is one of those people. Indeed, if we were to
extend our go-to interpretation—temporarily, mind—by adding
the new name ‘¢’ to refer to Lady Gaga, then ‘R(b,¢)’ would be
true on this extended interpretation. This, surely, should suffice
to make ‘Ix R(b,x)’ true on the original go-to interpretation.

In our go-to interpretation, ‘Ix(P(x) A R(x,a))’ should also
be true. After all, in the domain, there is certainly someone who
was both a philosopher and born before Aristotle. Socrates is one
such person. Indeed, if we were to extend our go-to interpretation
by letting a new name, ‘¢c’, denote Socrates, then ‘P(¢) A R(¢,a)’
would be true on this extended interpretation. Again, this should
surely suffice to make ‘Ix(P(x) AR(x,a))’ true on the original go-
to interpretation.

In our go-to interpretation, ‘Vx3y R(x,y)’ should be false. Af-
ter all, consider the last person born in the year 1999. We don’t
know who that was, but if we were to extend our go-to interpre-
tation by letting a new name, ‘d’, denote that person, then we
would not be able to find anyone else in the domain to denote
with some further new name, perhaps ‘¢’, in such a way that
‘R(d,e)’ would be true. Indeed, no matter whom we named with
‘¢’, ‘R(d,e)’ would be false. This observation is surely sufficient
to make ‘Jy R(d,y)’ false in our extended interpretation, which in
turn is surely sufficient to make ‘Vx3y R(x,y)’ false on the original
go-to interpretation.

If you have understood these three examples, that’s what mat-
ters. It provides the basis for a formal definition of truth for
quantified sentences.

Strictly speaking, though, we still need to give that definition.
The result, sadly, is a bit ugly, and requires a few new definitions.
Brace yourself!

Suppose that o is a formula. We will write

A(...x...x...)
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to indicate that o contains some number of free occurrences of
the variable o (it is usually one or more, but we don’t exclude
the case that « does not occur free at all.) Suppose also that ¢ is
a name. Then we will write:

A(...c...c...)

for the formula we obtain by replacing every free occurrence of
a in o with ¢. The resulting formula is called a SUBSTITUTION
INSTANCE of Vaesd and Jacsd. Also, < is called the INSTANTIATING
NAME. (If o happens to contain no free occurrence of «, then the
substitution instance is identical to . So, for instance,

Ax(R(e,x) & F(x))
is a substitution instance of
Vyax(R(y,x) < F(x))

with the instantiating name ‘¢’ and instantiated variable ‘y’.

A brief aside: when substituting names for variables, we only
allow the replacement of free variables. This is necessary since
we allow formulas such as ‘Ix(Vx F(x) — G(x))’, where different
quantifiers bind the same variables. We consider only ‘Vx F(x) —
G (e)’ as a substitution instance of this formula, and not ‘F(¢) —
G(e)’, because the ‘4’ in ‘F(x)’ is not free—it is bound by ‘Vx’.
(You may want to review section 27.3 in this connection.)

Our interpretation will include a specification of which names
correspond to which objects in the domain. Take any object in
the domain, say, d, and a name ¢ which is not already assigned
by the interpretation. If our interpretation is I, then we can con-
sider the interpretation I[d/c] which is just like I except it also
assigns the object d to the name <. Then we can say that d saTis-
FIES the formula (...« ...« ...) in the interpretation I if, and
only if, d(...c...c...) is true in I[d/<c]. (We assume that the
name ¢ does not already occurin (... ...« ...).) If d satisfies
A(...x...x...) wealsosay that A(...x...x...) is true of d.
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> The interpretation I[d/c] is just like the interpretation
I except it also assigns the object d to the name <.

> An object d SATISFIES (...®...a...) in interpreta-
tion Tiff A(...c...¢...) is true in I[d/¢] (where the
name < does not already occur in (... x...a...)).

So, for instance, Socrates satisfies the formula P (x) since P(¢)
is true in the interpretation I[Socrates/c], i.e., the interpretation:

domain: all people born before 2000 CE
a: Aristotle
b: Beyoncé
¢: Socrates
P(x): x is a philosopher
R(x,y): x was born before y

Armed with this notation, the rough idea is as follows. The
sentence Vad(...x ...« ...) will be true in I iff, for any object d
in the domain, d(...<¢...<...) is true in I[d/<], i.e., no mat-
ter what object (in the domain) we name by the new name <.
In other words, Vaed(... ...« ...) is true iff every object in
the domain satisfies (... ...« ...). Similarly, the sentence
Jad(...x...a...) will be true in I iff there is some object that
satisifes A(...x...x...),l.e, A(...c...c...) is true in I[d/c]
for some object d and a new name <.

> Voed(...x...a...)is true in an interpretation iff every
object in the domain satisfies (... @ ... ...).

> Jaxd(...ax...x...) is true in an interpretation iff at
least one object in the domain satisfies (... x ... a...).

To be clear: all this is doing is formalizing (very pedantically)
the intuitive idea expressed above. The result is a bit ugly, and
the final definition might look a bit opaque. Hopefully, though,
the spirit of the idea is clear.
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Practice exercises

A. Consider the following interpretation:

vV vV VvV v V

The domain comprises only Corwin and Benedict
‘A(x)’ is to be true of both Corwin and Benedict
‘B(x)’ is to be true of Benedict only

‘N(x)’ is to be true of no one

‘¢’ is to refer to Corwin

Determine whether each of the following sentences is true or false
in that interpretation:

© ON ST o

B(c)

A(c) & =N(c)

N(c) = (A(c) vV B(c))
Vx A(x)

Vx—B(x)

Ax(A(x) A B(x))
Ax(A(x) — N(x))
Vx(N(x) V=N (x))

Jx B(x) — Vx A(x)

B. Consider the following interpretation:

vV vV VvV VvV Vv V

The domain comprises only Lemmy, Courtney and Eddy
‘G(x)’ is to be true of Lemmy, Courtney and Eddy.
‘H(x)’ is to be true of and only of Courtney

‘M (x)’ is to be true of and only of Lemmy and Eddy

‘¢’ is to refer to Courtney

‘e’ is to refer to Eddy

Determine whether each of the following sentences is true or false
in that interpretation:

1.
2.

3.

H(c)
H(e)
M(c)V M(e)
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4. G(¢) V-G(c)

5. M(c) - G(c)

6. Jx H(x)

7. Yx H(x)

8. dx-M(x)

9. Ix(H(x) A G(x))
0. Ax(M(x) A G(x))
11. Vx(H(x) vV M(x))
12. dx H(x) A Jx M (x)
13. Vx(H (x) & =M (x))
14. dx G(x) A Jx-G(x)
15. Vady(G(x) A H(y))

C. TFollowing the diagram conventions introduced at the end of
chapter 30, consider the following interpretation:

Ci——2

3 4 5.)

Determine whether each of the following sentences is true or false
in that interpretation:

dx R(x,x)

Vx R(x,x)

JxVy R(x,y)

JxVy R(y,x)

VaVyVz((R(x,9) AR(y,z)) — R(x,2))
VaVyVz((R(x,9) A R(x,2)) = R(y,2))
JxVy R (x,y)

Vx(3y R(x,y) — Jy R(y,x))

JxJy(—x =y A R(x,y) A R(y,x))
IxVy(R(x,y) © x =)

. JxVy(R(p,x) & x =9)

P XN o @ P H

[
[
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12. IxIy(—x =y AR(x,9) AV2(R(2,x) & y = 2))



CHAPTER 32

Semantic
concepts

32.1 Validities, entailment, etc.

Defining truth in FOL was quite fiddly. But now that we are done,
we can define various other central logical notions. These defi-
nitions will look very similar to those for TFL, from chapter 12.
However, remember that they concern interpretations, rather than

valuations.
We will use the symbol ‘¢’ for FOL much as we did for TFL.
So the sentences d1,9o,...,9, ENTAIL the sentence 6,
Aq,dAg, ... ,&qn E G,
iff there is no interpretation in which all of o1, do, ..., o, are

true and in which 6 is false. Derivatively,
Fd

means that ¢ is true in every interpretation.
The other logical notions also have corresponding definitions
in FOL:

277
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> An FOL sentence o is a VALIDITY iff & is true in every
interpretation; i.e., k£ d.

> dl is a CONTRADICTION iff o is false in every interpreta-
tion; i.e., F — .

> oAqi,949,...,94, .. € is VALID IN FOL iff there is no inter-
pretation in which all of the premises are true and the
conclusion is false; i.e., s1,99,...,d, £ 6. It is INVALID
IN FOL otherwise.

> Two FOL sentences o and 9 are EQUIVALENT iff they are
true in exactly the same interpretations as each other;

i.e., both o £ B and % E o.

> The FOL sentences oy, oo, ..., 9, are JOINTLY SATIS-
FIABLE iff some interpretation makes all of them true.
They are JOINTLY UNSATISFIABLE iff there is no such in-
terpretation.

Note that we use the standard term ‘validity’ for sentences
that are true in every interpretation. Validities are to FOL what
tautologies are to TFL.

32.2 Expressibility

The concept of an object satisfying a formula with one free vari-
able introduced in section 31.3 can also be extended to formulas
with more than one free variable. If we have a formula d(x,y)
with two free variables « and y, then we can say that a pair of
objects (a,b) satisfies od(x,y) iff d(<,d) is true in the interpre-
tation extended by two names ¢ and <, where ¢ names a and
names b. So, for instance, (Socrates, Plato) satisfies R(x,y) since
R(¢,d) is true in the interpretation:

domain: all people born before 2000 CE
a: Aristotle
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b: Beyoncé
¢: Socrates
d: Plato
P(x): __ . 1is a philosopher
R(x,y): __  was born before y

For atomic formulas, the objects, pairs of objects, etc., that sat-
isfy them are exactly the extension of the predicate given in the
interpretation. But the notion of satisfaction also applies to non-
atomic formulas, e.g., the formula P(x) A R(x,b) is satisfied by
all philosophers born before Beyoncé. It even applies to formulas
involving quantifiers, e.g., P(x) A =3y(P(y) A R(y,x)) is satisfied
by all people who are philosophers and for whom it is true that
no philosopher was born before them—in other words, it is true
of the first philosopher.

By considering formulas (possibly involving quantifiers) with
two free variables, we can express relations for which we do not
have dedicated predicate symbols in our interpretation or sym-
bolization key. Consider the formula R(x,y). It expresses the re-
lation x was born before 5> since that is how we have
specified its extension. What happens if we switch the variables,
i.e., consider ‘R(y,x)’? A pair of objects (y,x) in the domain (i.e.,
a pair of people) satisfies R(y,x) if, and only if, the reverse pair
(x,y) satisfies R(x,y). In other words, R(y,x) expresses the rela-
tion ¢ x was born after 5 - Or suppose we add to our
interpretation a predicate for ‘teacher of’.

T (x,9): « was a teacher of y

Then the formula ‘32(7°(z,x) A T'(2,y))’ is satisfied by x and y
if, and only if, some person z was a teacher of both x and vy,
i.e., it expresses ¢ » and , have a teacher in common’.
Similarly, Vz(T (x,z) < T(y,z))’ expresses x and ¥
taught the same people’.

The take-home message of these examples is that some En-
glish predicates, such as ° x and , have a teacher in
common’, can be sometimes be expressed in an interpretation
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even if there is no explicit predicate symbol available for them.
If that is the case, you can use a formula that expresses them
(such as ‘z(T(z,x) A T(z,y))’) to symbolize English sentences
involving the predicate.

Practice exercises

A. Given the following interpretation:

domain: people

W (x): x is @ woman (or girl)
M(x): x is a man (or boy)
Y (x,9): x 1s younger than y
O(x,y): x is an offspring of 5
d: Dana
a: Alex

express the following relations:

1. » is older than ¥
x 18 ,’s mother
3. x and , are siblings (note that you can’t be your
own sibling)
4. x 18 ;s brother

B. Using the symbolization key from the previous exercise, sym-
bolize the following sentences:

1. Alex and Dana are sisters.
2. Fathers are older than their children.
3. Alex’s parents are the same age.



Using

interpretations

33.-1 Validities and contradictions

Suppose we want to show that ‘3x A(x,x) — B(d)’ is not a valid-
ity. This requires showing that the sentence is not true in every
interpretation; i.e., that it is false in some interpretation. If we
can provide just one interpretation in which the sentence is false,
then we will have shown that the sentence is not a validity.

In order for ‘x A(x,x) — B(d)’ to be false, the antecedent
(‘Ix A(x,x)’) must be true, and the consequent (‘B(d)’) must be
false. To construct such an interpretation, we start by specifying
a domain. Keeping the domain small makes it easier to specify
what the predicates will be true of, so we will start with a domain
that has just one member. For concreteness, let’s say it is just the
city of Paris.

domain: Paris

The name ‘d’ must refer to something in the domain, so we have
no option but:

d: Paris

281
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Recall that we want ‘Ix A(x,x)’ to be true, so we want all mem-
bers of the domain to be paired with themselves in the extension
of ‘A’. We can just offer:

A(x,y): x 1s identical with y

Now ‘A(d,d)’ is true, so it is surely true that ‘Ix 4(x,x)’. Next,
we want ‘B(d)’ to be false, so the referent of ‘d’ must not be in
the extension of ‘B’. We might simply offer:

B(x): x is in Germany

Now we have an interpretation where ‘3x A(x,x)’ is true, but
where ‘B(d)’ is false. So there is an interpretation where
‘x A(x,x) — B(d)’ is false. So ‘Jx A(x,x) — B(d)’ is not a
validity.

We can just as easily show that ‘3x A(x,x) — B(d)’ is not a
contradiction. We need only specify an interpretation in which
‘3x A(x,x) — B(d)’ is true; i.e., an interpretation in which either
‘Ax A(x,x)’ is false or ‘B(d)’ is true. Here is one:

domain: Paris

d: Paris
A(x,y): « is identical with y
B(x): « is in France

This shows that there is an interpretation where ‘Ix A(x,x) —
B(d)’ is true. So ‘Jx A(x,x) — B(d)’ is not a contradiction.

> To show that ¢ is not a validity, it suffices to find an
interpretation where o is false.

> To show that of is not a contradiction, it suffices to find
an interpretation where o is true.
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332 Logical equivalence

Suppose we want to show that ‘Vx S(x)’ and ‘Ix S(x)” are not
logically equivalent. We need to construct an interpretation in
which the two sentences have different truth values; we want one
of them to be true and the other to be false. We start by specifying
a domain. Again, we make the domain small so that we can
specify extensions easily. In this case, we will need at least two
objects. (If we chose a domain with only one member, the two
sentences would end up with the same truth value. In order to
see why, try constructing some partial interpretations with one-
member domains.) For concreteness, let’s take:

domain: Ornette Coleman, Miles Davis

We can make ‘3x §(x)’ true by including something in the exten-
sion of “S’, and we can make ‘Vx §(x)’ false by leaving something
out of the extension of ‘S’. For concreteness, let’s say:

S(x): x plays saxophone

Now ‘Jx S(x)’ is true, because ‘S(x)’ is true of Ornette Coleman.
Slightly more precisely, extend our interpretation by allowing ‘¢’
to name Ornette Coleman. ‘S(c¢)’ is true in this extended in-
terpretation, so ‘Ix §(x)’ was true in the original interpretation.
Similarly, ‘Vx .S (x)’ is false, because ‘S(x)’ is false of Miles Davis.
Slightly more precisely, extend our interpretation by allowing ‘d’
to name Miles Davis, and “S(d)’ is false in this extended interpre-
tation, so ‘Vx §(x)’ was false in the original interpretation. We
have provided a counter-interpretation to the claim that ‘Vx S (x)’
and ‘3x S(x)’ are logically equivalent.

To show that o/ and 9B are not logically equivalent, it suf-
fices to find an interpretation where one is true and the
other is false.
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33-3 Validity, entailment and satisfiability

To test for validity, entailment, or satisfiability, we typically need
to produce interpretations that determine the truth value of sev-
eral sentences simultaneously.

Consider the following argument in FOL:

Ax(G(x) - G(a)) .. AxG(x) — G(a)

To show that this is invalid, we must make the premise true and
the conclusion false. The conclusion is a conditional, so to make
it false, the antecedent must be true and the consequent must be
false. Clearly, our domain must contain two objects. Let’s try:

domain: Karl Marx, Ludwig von Mises
G(x): x hated communism
a: Karl Marx

Given that Marx wrote The Communist Manifesto, ‘G (a)’ is plainly
false in this interpretation. But von Mises famously hated com-
munism, so ‘3x G(x)’ is true in this interpretation. Hence
‘Ix G(x) — G(a)’ is false, as required.

Does this interpretation make the premise true? Yes it does!
Note that ‘G(a) — G(a)’ is true. (Indeed, it is a validity.) But
then certainly ‘3x(G(x) — G(a))’ is true, so the premise is true,
and the conclusion is false, in this interpretation. The argument
is therefore invalid.

In passing, note that we have also shown that ‘Ix(G(x) —
G(a))’ does not entail ‘Ix G(x) — G(a)’, i.e., that Ix(G(x) —
G(a)) ¥ 3x G(x) — G(a). Equally, we have shown that the sen-
tences ‘Ix(G(x) — G(a))’ and ‘=(3x G(x) — G(a))’ are jointly
satisfiable.

Let’s consider a second example:

Vx3y L(x,y) .. 3yVx L(x,y)

Again, we want to show that this is invalid. To do this, we must
make the premises true and the conclusion false. Here is a sug-
gestion:
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domain: Canadian citizens currently in a domestic partnership
with another Canadian citizen
L(x,y): x is in a domestic partnership with 5

The premise is clearly true on this interpretation. Anyone in
the domain is a Canadian citizen in a domestic partnership with
some other Canadian citizen. That other citizen will also, then,
be in the domain. So for everyone in the domain, there will be
someone (else) in the domain with whom they are in a domestic
partnership. Hence ‘Vx3y L(x,y)’ is true. However, the conclu-
sion is clearly false, for that would require that there is some
single person who is in a domestic partnership with everyone in
the domain, and there is no such person, so the argument is in-
valid. We observe immediately that the sentences ‘Vx3y L(x,y)’
and ‘-3yVx L(x,y)’ are jointly satisfiable and that ‘Vx3y L(x,y)’
does not entail ‘JyVx L(x,y)’.

For our third example, we’ll mix things up a bit. In chap-
ter 30, we described how we can present some interpretations
using diagrams. For example:

Co—rs

Using the conventions employed in chapter 30, the domain of
this interpretation is the first three positive whole numbers, and
‘R(x,y)’ is true of x and y just in case there is an arrow from x to y
in our diagram. Here are some sentences that the interpretation
makes true:

> Vx3dy R(y,x)’

> ‘TxVy R(x,y) (witness for x: 1)
> ‘TxVy(R(y,x) & x =y) (witness for x: 1)
> ‘xIy32((—y = 2 AR(x,9)) AR(2,x))” (witness for x: 2)
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> ‘FxVy -R(x,y) (witness for x: 3)
> ‘Tx(Iy R(y,x) A -Fy R(x,9)) (witness for x: 3)

This immediately shows that all of the preceding six sentences
are jointly satisfiable. We can use this observation to generate
invalid arguments, e.g.:

Vx3dy R(y,x),3xVy R(x,y) .. Vx3Iy R(x,y)
IxVy R(x,9),3xVy-R(x,y) .. ~IxTy3z(—y = 2 A (R(x,y) A R(z,x)))

and many more besides.

If some interpretation makes all of o1, 9y, ..., d, true and
6 is false, then:

1. A, dy,...,d, .. B is invalid; and
2. dq,49,...,94, ¥ 6; and
3. And dq,4o,...,9,,-6 are jointly satisfiable.

An interpretation which refutes a claim—to logical truth, say,
or to entailment—is called a counter-interpretation, or a counter-
model.

We’ll close this section, though, with a caution about the rela-
tionship between (in)validity and (non)entailment. Recall FOL’s
limitations: it is an extensional language; it ignores issues of
vagueness; and it cannot handle cases of validity for ‘special
reasons’. To take one illustration of these issues, consider this
natural-language argument:

Every fox is cute.
.. All vixens are cute.

This is conceptually valid: necessarily every vixen is a fox, so it
is impossible for the premise to be true and the conclusion false.
Now, we might sensibly symbolize the argument as follows:

Vx(F(x) = C(x)) .. Yx(V(x) — C(x))
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However, it is easy to find counter-models which show that
Vx(F(x) — C(x)) £Vx(V(x) > C(x)). (Exercise: find one.) So, it
would be wrong to infer that the English argument is invalid, just
because there is a countermodel to the relevant FOL-entailment.

The general moral is this. If you want to infer from the ab-
sence of an entailment in FOL to the invalidity of some English
argument, then you need to argue that nothing important is lost
in the way you have symbolized the English argument.

Practice exercises

A. Show that each of the following is neither a validity nor a
contradiction:

D(a) AN D(b)

Ax T (x, k)

P(m) A =Vx P(x)

VeJ(2) & 3y J ()

Vx(W (x,m,n) v Iy L(x,y))
Ax(G(x) > Vy M(y))
Ax(x =hAx=1i)

N o P

B. Show that the following pairs of sentences are not logically
equivalent.

1. J(a), K(a)

2. Jx J(x), J(m)

3. Vx R(x,x), 3x R(x,x)

4. x P(x) > Q(c), Ix(P(x) — Q(¢))

5. Vx(P(x) = =0Q(x)), Ix(P(x) A =Q(x))
6. Jx(P(x) A Q(x)), Ix(P(x) — Q(x))

7. Vx(P(x) = Q(x)), Vx(P(x) A Q(x))

8. Vx3y R(x,y), 3xVy R(x,y)

9. Vx3dy R(x,y), Vx3y R(y,x)

.S

C. Show that the following sentences are jointly satisfiable:
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L PN T

M(a),~N(a),P(a),~Q(a)
L(e,e),L(e,g),~L(g,e),~L(g,g)

—~(M(a) ANAx A(x)),M(a) V F(a),Yx(F(x) — A(x))
M(a) vV M(b),M(a) > Vx—M(x)

Yy G(y),Yx(G(x) — H(x)),3y~1(y)

Ax(B(x) V A(x)),Vx—'C(x),Vx[(A(x) A B(x)) — C(x)]
Ax X (x),Ax Y (x),Vx(X (x) & =Y (x))

Vx(P(x) V Q(x)),35-(Q (%) A P(x))

Jz2(N(z) A O(2,2)),VxVy(0(x,y) — 0(y,x))

—3xVy R(x,y),Yx3y R(x,y)

-R(a,a),Vx(x =aV R(x,a))

VaVyVz[(x =y Vy=2)Va =2z],IxTy ~x =y

L ITH(Z() A Z()) Ax =), ~Z(d), d = ¢

D. Show that the following arguments are invalid:

p—

P XN o @ P

Vx(A(x) — B(x)) .. 3x B(x)

Vx(R(x) = D(x)),Yx(R(x) — F(x)) .. Ix(D(x) A F(x))
Jx(P(x) — Q(x)) .. Ix P(x)

N(a) AN(b) AN(c) .. Vx N(x)

R(d,e),3Ax R(x,d) .. R(e,d)

Ax(E(x) A F(x)),3x F(x) > dx G(x) .. Ix(E(x) A G(x))
Vx 0(x,¢),Yx0(c,x) ... Yx O(x,x)

Ax(J(x) AK(x)),Fx~K (x),3x— ] (x) .. Tx(— ] (x) A=K (x))
L(a,b) —> VYx L(x,b),3x L(x,b) ... L(b,b)

Vx(D(x) = 3y T (y,x)) .. Iy3z ~y =z



CHAPTER 34

Reasoning
about
interpretations

34.1 Validities and contradictions

We can show that a sentence is no¢ a validity just by providing
one carefully specified interpretation: an interpretation in which
the sentence is false. To show that something is a validity, on the
other hand, it would not be enough to construct ten, one hundred,
or even a thousand interpretations in which the sentence is true.
A sentence is only a validity if it is true in every interpretation,
and there are infinitely many interpretations. We need to reason
about all of them, and we cannot do this by dealing with them
one by one!

Sometimes, we can reason about all interpretations fairly eas-
ily. For example, we can offer a relatively simple argument that
‘R(a,a) V~R(a,a) is a validity:

Any relevant interpretation will give ‘R(a,a)’ a truth
value. If ‘R(a,a)’ is true in an interpretation, then

289
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‘R(a,a) V =R(a,a)’ is true in that interpretation. If
‘R(a,a)’ is false in an interpretation, then —R(a,a)
is true, and so ‘R(a,a) V =R(a,a)’ is true in that
interpretation. These are the only alternatives. So
‘R(a,a) V —~R(a,a)’ is true in every interpretation.
Therefore, it is a validity.

This argument is valid, of course, and its conclusion is true. How-
ever, it is not an argument in FOL. Rather, it is an argument in
English about FOL: it is an argument in the metalanguage.

Note another feature of the argument. Since the sentence in
question contained no quantifiers, we did not need to think about
how to interpret ‘a’ and ‘R’; the point was just that, however we
interpreted them, ‘R(a,a)’ would have some truth value or other.
(We could ultimately have given the same argument concerning
TFL sentences.)

Let’s have another example. The sentence ‘Vx(R(x,x) V
=R (x,x))’ should obviously be a validity. However, saying pre-
cisely why is quite tricky. We cannot say that ‘R(x,x) V =R(x,x)’
is true in every interpretation, since ‘R(x,x) V -~R(x,x)’ is not
even a sentence of FOL (remember that ‘x’ is a variable, not a
name). Instead, we should say something like this:

Consider some arbitrary interpretation. ‘Vx(R(x,x)V
—R(x,x))’ is true in our interpretation iff ‘R(x,x) V
—R(x,x)’ is satisfied by every object of its domain.
Consider some arbitrary member of the domain,
which, for convenience, we will call Fred. Either
Fred satisfies ‘R(x,x)’ or it does not. If Fred sat-
isfies ‘R(x,x)’, then Fred also satisfies ‘R(x,x) V
-R(x,x)’. If Fred does not satisfy ‘R(x,x)’, it does
satisfy ‘=R (x,x)” and so also ‘R(x,x) V-R(x,x)’." So
either way, Fred satisfies ‘R(x,x) V ~R(x,x)’. Since
there was nothing special about Fred—we might have

“We use here the fact that the truth conditions for connectives also apply
to satisfaction: a satisfies d(x) V B(x) iff a satisfies A (a) or B(x), etc.
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chosen any object—we see that every object in the do-
main satisfies ‘R(x,x) V =R(x,x)’. So ‘Vx(R(x,x) V
-R(x,x))’ is true in our interpretation. But we
chose our interpretation arbitrarily, so ‘Vx(R(x,x) V
—R(x,x))’ is true in every interpretation. It is there-
fore a validity.

This is quite long-winded, but, as things stand, there is no alter-
native. In order to show that a sentence is a validity, we must
reason about all interpretations.

34.2 Other cases

Similar points hold of other cases too. Thus, we must reason
about all interpretations if we want to show:

> that a sentence is a contradiction (this requires that it is
false in every interpretation);

> that two sentences are logically equivalent (this requires
that they have the same truth value in every interpretation);

> that some sentences are jointly unsatisfiable (this requires
that there is no interpretation in which all of those sentences
are true together, i.e., that, in every interpretation, at least
one of those sentences is false);

> that an argument is valid (this requires that the conclusion
is true in every interpretation where the premises are true);

> that some sentences entail another sentence.

The problem is that, with the tools available to you so far, rea-
soning about all interpretations is a serious challenge! For a final
example, here is a perfectly obvious entailment:

Vx(H(x) A J(x)) EVx H(x)

After all, if everything is both / and J, then everything is /7. But
we can only establish the entailment by considering what must be
true in every interpretation in which the premise Vx(H (x) A J (x))
is true. To show this, we would have to reason as follows:
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Consider an arbitrary interpretation in which
Vx(H(x)A J(x)) is true. It follows that ‘H (x) A J (x)’
is satisfied by every object in this interpretation.
‘H (x)’ will, then, also be satisfied by every object.” So
it must be that ‘Vx H(x)’ is true in the interpretation.
We’ve assumed nothing about the interpretation ex-
cept that it was one in which ‘Vx(H (x)A J(x))’ is true.
So any interpretation in which ‘Vx(H (x) A J(x)) is
true is one in which ‘Vx H(x)’ is true.

Even for a simple entailment like this one, the reasoning is some-
what complicated. For more complicated entailments, the rea-
soning can be extremely torturous.

The following table summarizes whether a single interpreta-
tion or counter-interpretation suffices, or whether we must reason
about all interpretations.

Yes No
validity? all interpretations  one counter-interpretation
contradiction? all interpretations one counter-interpretation
equivalent? all interpretations  one counter-interpretation
satisfiable? one interpretation all interpretations
valid? all interpretations  one counter-interpretation
entailment? all interpretations  one counter-interpretation

You might want to compare this table with the table at the end
of chapter 15. The key difference resides in the fact that TFL con-
cerns truth tables, whereas FOL concerns interpretations. This
difference is deeply important, since each truth-table only ever
has finitely many lines, so that a complete truth table is a rela-
tively tractable object. By contrast, there are infinitely many in-
terpretations for any given sentence(s), so that reasoning about
all interpretations can be a deeply tricky business.

*Here again we make use of the fact that any object that satisfies sf(a) A
%B(x) must satisfy both d(a) and B(x).



CHAPTER 35

Properties of
relations

Symbolization keys allow us to assign two-place predicate sym-
bols like ‘R(x,y)’ to English predicates with two gaps, e.g,
¢ x is older than 5 - This allows us to symbolize ar-

guments such as:

Rudolf is older than Kurt.
Kurt is older than Julia.
.. Rudolf is older than Julia.

This argument is valid, but its symbolization in FOL,

R(r,k)

R(k,7)

oo R(r,j)
is not. That’s because the validity of the argument depends on a
property of the relation ‘x is older than y’, namely that if some
person x is older than a person y, and y is also older than z, then

x must be older than z. This property of ‘older than’ is called
TRANSITIVITY. We can symbolize this property itself in FOL as:

VaVyVz((R(x,9) A R(y,2)) — R(x,2))
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Whenever the validity of an argument only depends on a property
of a relation involved, and this property can be symbolized in
FOL, we can add this symbolization to the argument and obtain
an argument that is in fact valid in FOL:

VaVyVz((R(x,9) A R(y,2z)) — R(x,2))
R(r,k)
R, J)

o R(r,j)

Properties of relations such as transitivity are important con-
cepts especially in applications of logic in the sciences. For in-
stance, order relations between numbers such as < and < (and
also > and >) are transitive. The identity relation = is also tran-
sitive.

There are other properties of relations that are important
enough to have names, and often show up in applications. Here
are some:

> A relation R is TRANSITIVE iff it is the case that whenever
R(x,y) and R(y,z) then also R(x,z2).

> A relation R is REFLEXIVE iff for any x, R(x,x) holds.

> A relation R is syMmMETRIC iff whenever R(x,y) holds,
so does R(y,x).

> A relation R is ANTI-SYMMETRIC iff for no two different
x and y, R(x,y) and R(y,x) both hold.

We have already seen that transitivity can be symbolized in
FOL. The others can, too:

> R is reflexive: Vx R(x,x)
> R is symmetric:

VaVy(R(x,y) = R(y,x))
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> R is anti-symmetric:

=3xTy((R(x,y) A R(y,x)) A —x = y)

or, equivalently,

Va¥y((R(x,9) AR(y,x)) = x =)

Relations expressing an equivalence in some respect are re-
flexive, e.g., ‘is the same age as’, ‘is as tall as’, and the most
stringent equivalence of them all, identity =. They are also sym-
metric: e.g., whenever x is as tall as y, then y is as tall as x. In fact,
relations that are reflexive, symmetric, and transitive are called
EQUIVALENCE RELATIONS.

Equivalences aren’t the only symmetric relations. For in-
stance, ‘is a sibling of’ is symmetric, but it is not reflexive (as
no one is their own sibling).

Relations that are reflexive, transitive, and anti-symmetric are
called PARTIAL ORDERS. For instance, < and > are partial orders.
The relation ‘is no older than’, by contrast, is reflexive and tran-
sitive, but not anti-symmetric. (Two different people can be of
the same age, and so neither is older than the other.)

Practice exercises

A. Give examples of relations with the following properties:

1. Reflexive but not symmetric
2. Symmetric but not transitive
3. Transitive, symmetric, but not reflexive

B. Show that a relation can be both symmetric and anti-
symmetric by giving an interpretation that makes both of the
following sentences true:

VaVy(R(x,y) — R(y,x))
VaVy((R(x,9) A R(y,x)) — x = y)



PART VII

Natural
deduction for
FOL



Basic rules for
FOL

The language of FOL makes use of all of the connectives of TFL.
So proofs in FOL will use all of the basic and derived rules from
part IV. We will also use the proof-theoretic notions (particularly,
the symbol ‘+’) introduced there. However, we will also need
some new basic rules to govern the quantifiers, and to govern the
identity sign.

36.1 Universal elimination

From the claim that everything is F, you can infer that any par-
ticular thing is . You name it; it’s . So the following should be
fine:

Vx R(x,x,d) PR

2 | R(a,a,d) VE, 1

We obtained line 2 by dropping the universal quantifier and re-

placing every instance of ‘¢’ with ‘@’. Equally, the following
should be allowed:

297
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Vx R(x,x,d)
2 | R(d,d,d)

PR

VE, 1

We obtained line 2 here by dropping the universal quantifier and
replacing every instance of ‘4’ with ‘d’. We could have done the
same with any other name we wanted.

This motivates the universal elimination rule (VE):

m | VYed(...c...x...)
A(...c...c...) VE, m

The notation here was introduced in chapter 31. The point
is that you can obtain any substitution instance of a universally
quantified formula: replace every free occurrence of the quanti-
fied variable with any name you like.

We should emphasize that (as with every elimination rule)
you can only apply the VE rule when the universal quantifier is
the main logical operator. So the following is banned:

1 |VxB(x)—>B(k) PR

2 ‘ B(b) — B(k) naughy attempt to invoke VE, 1
This is illegitimate, since ‘Vx’ is not the main logical operator in
line 1. (If you need a reminder as to why this sort of inference
should be banned, reread chapter 24.)

36.2 Existential introduction

From the claim that some particular thing is F, you can infer that
something is /. So we ought to allow:

PR

2 | AxR(a,a,x) 3,1
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Here, we have replaced the name ‘d’ with a variable ‘x’, and then
existentially quantified over it. Equally, we would have allowed:

PR

2 | AxR(x,x,d) 3,1

Here we have replaced both instances of the name ‘@’ with a
variable, and then existentially generalized. But we do not need
to replace both instances of a name with a variable: if Narcissus
loves himself, then there is someone who loves Narcissus. So we
also allow:

PR

2 | IxR(x,a,d) 31

Here we have replaced one instance of the name ‘@’ with a vari-
able, and then existentially generalized. These observations mo-
tivate our introduction rule, although to explain it, we will need
to introduce some new notation.

Where 4 is a sentence containing the name ¢, we can
emphasize this by writing ‘d(...c...¢c...)’. We will write
‘d(...x...c...) to indicate any formula obtained by replacing
some or all of the instances of the name ¢ with the variable «
(provided ¢, wherever it is replaced, does not occur in the scope
of a quantifier binding «). Armed with this, our introduction rule
dlis:

m |A(...c...c...)
FxA(...x...c...) T, m

36.3 Empty domains

The following proof combines our two new rules for quantifiers:
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PR

2 | F(a) VE, 1
3 |3xF(x) 3L2

Could this be a bad proof? If anything exists at all, then certainly
we can infer that something is F, from the fact that everything
is F. But what if nothing exists at all? Then it is surely vacuously
true that everything is F; however, it does not following that
something is F, for there is nothing to be F. So if we claim that,
as a matter of logic alone, ‘3x F(x)’ follows from ‘Vx F(x)’, then
we are claiming that, as a matter of logic alone, there is something
rather than nothing. This might strike us as a bit odd.

Actually, we are already committed to this oddity. In chap-
ter 23, we stipulated that domains in FOL must have at least one
member. We then defined a validity (of FOL) as a sentence which
is true in every interpretation. Since ‘Ix x = x’ will be true in ev-
ery interpretation, this also had the effect of stipulating that it is
a matter of logic that there is something rather than nothing.

Since it is far from clear that logic should tell us that there
must be something rather than nothing, we might well be cheat-
ing a bit here.

If we refuse to cheat, though, then we pay a high cost. Here
are three things that we want to hold on to:

1. Vx F(x) + F(a): after all, that was VE.

2. F(a) v Jx F(x): after all, that was 3L

3. the ability to copy-and-paste proofs together: after all, rea-
soning works by putting lots of little steps together into
rather big chains.

If we get what we want on all three counts, then we have to coun-
tenance that Vx F'(x) - 3x F(x). So, if we get what we want on all
three counts, the proof system alone tells us that there is some-
thing rather than nothing. And if we refuse to accept that, then
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we have to surrender one of the three things that we want to hold
on to!

Before we start thinking about which to surrender, we might
want to ask how much of a cheat this is. Granted, it may make it
harder to engage in theological debates about why there is some-
thing rather than nothing. But the rest of the time, we will get
along just fine. So maybe we should just regard our proof sys-
tem (and FOL, more generally) as having a very slightly limited
purview. If we ever want to allow for the possibility of nothing,
then we will have to cast around for a more complicated proof
system. But for as long as we are content to ignore that possibil-
ity, our proof system is perfectly in order. (As, similarly, is the
stipulation that every domain must contain at least one object.)

36.4 Universal introduction

Suppose you had shown of each particular thing that it is F (and
that there are no other things to consider). Then you would be
justified in claiming that everything is F. This would motivate the
following proof rule. If you had established each and every single
substitution instance of ‘Vx F(x)’, then you can infer ‘Vx F(x)’.

Unfortunately, that rule would be utterly unusable. To es-
tablish each and every single substitution instance would require
proving ‘F(a)’, ‘F(b)’, ..., ‘F(j2)’, ..., ‘F(r79002)’; ..., and so
on. Indeed, since there are infinitely many names in FOL, this
process would never come to an end. So we could never apply
that rule. We need to be a bit more cunning in coming up with
our rule for introducing universal quantification.

A solution will be inspired by considering:

Vx F(x) .. Vy F(y)

This argument should obviously be valid. After all, alphabetical
variation ought to be a matter of taste, and of no logical conse-
quence. But how might our proof system reflect this? Suppose we
begin a proof thus:
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1| VxF(x) PR
2 | F(a) VE, 1

We have proved ‘F(a)’. And, of course, nothing stops us from
using the same justification to prove ‘F(d)’, ‘F(c¢)’, ..., ‘F(j2)’,
.ovy ‘F(779002), ..., and so on until we run out of space, time,
or patience. But reflecting on this, we see that there is a way to
prove F (<), for any name <. And if we can do it for any thing,
we should surely be able to say that ‘F’ is true of everything. This
therefore justifies us in inferring ‘Vy F(y)’, thus:

PR

2 | F(a) VE, 1
3 |VyF(y) VL2

The crucial thought here is that ‘@’ was just some arbitrary name.
There was nothing special about it—we might have chosen any
other name—and still the proof would be fine. And this crucial
thought motivates the universal introduction rule (VI):

m|d(...c...c...)
Ved(...x...x...) VI,m

where the name ¢ must not occur in a premise or an undis-
charged assumption.

In section 31.3, we introduced a convention for indicating sub-
stitution instances: We said that if A(...x...x...) is a formula,
then A(...<c...c...) is the result of replacing every free occur-
rence of « in d by <. To state our VI rule, we are using the same
convention, except in the other direction: If A(...¢c...¢c...) is
a formula, then o(...x ... ...) is the result of replacing every
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occurrence of ¢ in it by . (This is only allowed as long as ¢
does not occur in the scope of a quantifier binding « in o.)

There are a two important things to watch out for in applying
the VI rule. If we are not careful with the choice of name ¢ and
its replacement by « we are at risk of making some incorrect
inferences.

The constraint on the VI rule requires that ¢ must not occur
in a premise or an undischarged assumption. This constraint
ensures that we are always reasoning at a sufficiently general level.
To see the constraint in action, consider this terrible argument:

Everyone loves Kylie Minogue.
.. Everyone loves themselves.

We might symbolize this obviously invalid inference pattern as:
Vx L(x,k) .. Vx L(x,x)

Now, suppose we tried to offer a proof that vindicates this argu-
ment:

Vx L(x,k) PR

L(k,k) VE, 1

Vx L(x,x) naughty attempt to invoke VI, 2

This is not allowed, because ‘4’ occurred already in a premise,
namely, on line 1. The crucial point is that, if we have made any
assumptions about the object we are working with, then we are
not reasoning generally enough to license VI.

Although the name may not occur in any undischarged as-
sumption, it may occur in a discharged assumption. That is, it
may occur in a subproof that we have already closed. For exam-
ple, this is just fine:
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1| |6 AS

2 | | G(d) R, 1

3 | G(d) > G(d) 1, 1-2
4 | V2(G(2) > G(2)) VL3

This tells us that ‘Vz(G(z) — G(z))’ is a theorem. And that is as
it should be.

If we only replace some names and not others, we end up
‘proving’ silly things. For example, consider the argument:

Everyone is as old as themselves.
. Everyone is as old as Judi Dench.

We might symbolize this as follows:
VxO(x,x) .. YxO(x,d)

But now suppose we tried to vindicate this terrible argument with
the following:

PR

2 10(d,d) VE, 1
3 | VxO(x,d) naughty attempt to invoke VI, 2

Fortunately, our rules do not allow us to do this: the attempted
proof is banned, since it doesn’t replace every occurrence of ‘d’
in line 2 with an ‘x’.

36.5 Existential elimination

Suppose we know that something is F. The problem is that sim-
ply knowing this does not tell us which thing is 7. So it would
seem that from ‘Jx F(x)’ we cannot immediately conclude ‘F(a)’,
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‘F(eg3)’, or any other substitution instance of the sentence. What
can we do?

Suppose we know that something is F, and that everything
which is F is also G. In (almost) natural English, we might reason
thus:

Since something is F, there is some particular thing
which is an /. We do not know anything about it,
other than that it’s an F, but for convenience, let’s call
it ‘Becky’. So: Becky is F. Since everything which is
F is G, it follows that Becky is G. But since Becky
is G, it follows that something is G. And nothing
depended on which object, exactly, Becky was. So,
something is G.

We might try to capture this reasoning pattern in a proof as fol-
lows:

1 | 3xF(x) PR

2 | Vx(F(x) > G(x)) PR

3 F(b) AS

4 F(b) — G(b) VE, 2

5 G(b) —E, 4,3
6 dx G(x) aL 5

7 | Ax G(x) 3E, 1, 3-6

Breaking this down: we started by writing down our assumptions.
At line 3, we made an additional assumption: ‘F(4)’. This was
just a substitution instance of ‘Ix F(x)’. On this assumption, we
established ‘Ix G(x)’. Note that we had made no special assump-
tions about the object named by ‘4’; we had only assumed that
it satisfies ‘F#(x)’. So nothing depends upon which object it is.
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And line 1 told us that something satisfies ‘F(x)’, so our reason-
ing pattern was perfectly general. We can discharge the specific
assumption ‘F(4)’, and simply infer ‘3x G(x)’ on its own.

Putting this together, we obtain the existential elimination
rule (3E):

m | Jxed(...x...x...)
i |sﬂ(...c...c...) AS
il |
] 3E, m, i—j

< must not occur in any assumption undischarged before
line i

< must not occur in Jx A(...x...x...)

< must not occur in %

As with universal introduction, the constraints are extremely
important. To see why, consider the following terrible argument:

Tim Button is a lecturer.
Someone is not a lecturer.
.. Tim Button is both a lecturer and not a lecturer.

We might symbolize this obviously invalid inference pattern as
follows:
L(b),3x-L(x) .. L(b) A —=L(b)

Now, suppose we tried to offer a proof that vindicates this argu-
ment:
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1 | L(d) PR
2 | x—=L(x) PR
3 -L(b) AS
4 L(b) A-L(b) AL1,3
5 | L(b) A=L(b) naughty attempt
to invoke JE , 2, 3—4

The last line of the proof is not allowed. The name that we used
in our substitution instance for ‘Ix =L(x)’ on line 3, namely ‘4’,
occurs in line 4. This would be no better:

1| L(b) PR
2 | x—=L(x) PR
3 AS
4 L(b) A =L(b) AL 1,3
5 x(L(x) A=L(x)) 3L 4
6 | 3x(L(x) A =L(x)) naughty attempt
to invoke JE , 2, 3-5

The last line is still not allowed. For the name that we used in
our substitution instance for ‘3x ~L(x)’, namely ‘4’, occurs in an
undischarged assumption, namely line 1.

Finally, consider this ‘proof’:
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1 | Ix L(a,x) PR
L(a,a) AS
dx L(x,x) 31,2

=~ W N

Ix L(x,x) naughty attempt

to invoke JE , 1, 2-3

Here the name ‘a’ violates the second condition of the 3E rule: it
occurs in ‘3x L(a,x)’ on line 1. And we have to prevent this from
being a proof, since it is invalid: ‘Someone likes themselves’ does
not follow from ‘Alex likes someone’.

The moral of the story is this. If you want to squeeze information
out of an existential quantifier, choose a new name for your substitu-
tion instance. That way, you can guarantee that you meet all the
constraints on the rule for 3E.

36.6 Quantifier rules and vacuous
quantification

There is a subtle issue in our quantifier rules that has to do with
an aspect of the way we have specified the rules of our syntax,
namely the possibility of vacuous quantification (see the end of
section 27.3). In sections 36.1 and 36.5; we made use of the sub-
stitution notation of chapter 31: d(...¢...¢...) is the formula
obtained by replacing every free occurrence of « in o with <.
Here, we emphasize the ‘free’ for a reason. It means you cannot
always replace every occurrence of a. For instance, this would be
incorrect:

1 |Vx(F(x)/\EIxG(x)) PR

2 | F(a) A3xG(a) naughty attempt

to invoke VE, 1
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On line 2, we have formed the substitution instance incorrectly:
we replaced the ‘¥’ in both ‘F(x)’ and in ‘G(x)’ by ‘a’, but only
the first one is a free occurrence—the other one is bound by ‘3x’.
Not only would this violate a restriction on substitution, it would
allow us to ‘prove’ an invalid argument. Since ‘Ix G'(a)’ is a case
of vacuous quantification, it is equivalent to just ‘G(a)’. Further-
more, line 1 is equivalent to ‘Vx(F(x) A 3y G(y))’. It should be
easy to see that this does not entail ‘F(a) A G(a)’. You’re un-
likely to encounter such a case (unless you have a devious in-
structor): your exercises will likely only involve sentences like
Vx(F(x) A3y G(y))’, with variables nicely kept separate.

In section 36.2, we said that we use ‘d(...x...<c...)’ to in-
dicate any formula obtained by replacing some or all of the in-
stances of the name ¢ with the variable « provided ¢, wherever it
is replaced, does not occur in the scope of a quantifier binding x. The
emphasized restriction prohibiting the replacement of ¢ in some
cases is somewhat subtle. You probably will never find yourself in
a situation where you run the risk of violating it. But it is needed
to make the rule correct. Since we allow vacuous quantification,
for instance, ‘IxVx L(x,x)’ is a legal sentence of FOL. It’s just
that in it, the first ‘3%’ doesn’t do any work, and the sentence is
equivalent to just ‘Vx L(x,x)’. Now, ‘Vx L(x,x)’ could be obtained
from ‘Vx L(a,x)’ by replacing the name ‘@’ by the variable ‘x’ if
we weren’t careful and overlooked that here ‘a’ does occur in the
scope of ‘Vx’. Without the restriction, the following would then
be allowed:

Vx L(a,x) PR

2 | 3xVx L(x,x) naughty attempt

to invoke 3I, 1

But since ‘JxVx L(x,x)’ is equivalent to just ‘Vx L(x,x)’, this
would be an invalid inference. To see why, read ‘L’ as ‘likes’:
From ‘Alex likes everyone’ it does not follow that everyone likes
everyone.
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Similarly, in section 36.4, we said that (...« ...« ...) is the
result of replacing every occurrence of ¢ in d(...c...c...)byx,
but that this is only allowed as long as ¢ does not occur in the scope
of a quantifier binding  in 9. Like the constraint involved in the
statement of the 3I rule, it does not often happen that youd risk
violating it in practice. But here’s why it’s important. Again, since
we allow vacuous quantification, ‘Vx3x L(x,x)’ is a legal sentence
of FOL. However, Vx3x L(x,x)’ can be obtained from ‘Vx L(a,x)’
by replacing the name ‘a’ by the variable ‘x’ everywhere. This
violates the restriction we included, though: ‘a’ does occur in the
scope of ‘Vx’ in this case. Without the restriction, the following
would be allowed:

1 |Vy3xL(y.,x) PR
2 | Ax L(a,x) VE, 1

3 | Vx3x L(x,x) naughty attempt

to invoke VI, 2

But since ‘Vx3x L(x,x)’ is equivalent to just ‘Ix L(x,x)’, this
would be an invalid inference: ‘Someone likes themselves’ does
not follow from ‘Everyone likes someone’.

Practice exercises

A. Explain why these two ‘proofs’ are incorrect. Also, provide
interpretations which would invalidate the fallacious argument
forms the ‘proofs’ enshrine:

1 | VxR(x,x) PR

2 | R(a,a) VE, 1
3 | VyR(a,y) VI, 2
4 | VxVyR(x,y) VL3
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1 |Vx3yR(x,9) PR
Jy R(a,y) VE, 1
R(a,a) AS

dxR(x,x) 3L, 3

[ S B U\

dx R(x,x) 3E, 2, 34

B. The following three proofs are missing their citations (rule and
line numbers). Add them, to turn them into bona fide proofs.

1 | Va3y(R(x,9) V R(y,x))
2 | Vx=R(m,x)

3 | (R(m,y) vV R(y,m))

4 | | R(m,a) v R(a,m)
Yo ~R(m,a)

6 | | R(a,m)

7 | | 3xR(x.m)

8

3x R(x,m)
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1 | Vx(3y L(x,y) - ¥z L(z.x))
2 | L(a,b)
3 | 3yL(a.y) = VzL(z,a)
4 | 3yL(ay)
5 |VzL(za)
2. 6 | L(c,a)
7 | 3yL(c,y) = Yz L(z.c)
8 | IyLc.y)
9 | VzL(z.c)
10 | L(c.c)
11 | Va L(x,x)
1| Vx(J (%) — K(x))
2 | 3xVyL(x.y)
3 | VaJ(x)
4 Vy L(a,y)
5 L(a,a)
3 6 J(a)
7 J(a) = K(a)
8 K (a)
9 K (a) A L(a,a)
10 | | 3x(K(x) A L(x,x))
11 | 3x(K(x) A L(x,x))
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C. In exercise 24A, we considered fifteen syllogistic figures of
Aristotelian logic. Provide proofs for each of the argument forms.
NB: You will find it much easier if you symbolize (for example)
‘No Fis G’ as Vx(F(x) — =G(x))’.

D. Aristotle and his successors identified other syllogistic forms
which depended upon ‘existential import’. Symbolize each of
these argument forms in FOL and offer proofs.

1.

Barbari. Something is H. All G are F. All H are G. So:
Some H is F.

Celaront. Something is H. No G are F. All H are G. So:
Some H is not F.

Cesaro. Something is H. No F are G. All H are G. So:
Some H is not F.

Camestros. Something is H. All F are G. No H are G. So:
Some H is not F.

Felapton. Something is G. No G are F. All G are H. So:
Some H is not F.

. Darapti. Something is G. All G are F. All G are H. So:

Some H is T.

Calemos. Something is H. All F are G. No G are H. So:
Some H is not F.

Fesapo. Something is G. No F is G. All G are H. So: Some
H is not F.

Bamalip. Something is F. All F are G. All G are H. So:
Some H are F.

E. For each of the following claims, provide an FOL proof that
shows it is true.

ST @ o

FVx F(x) = Vy(F(y) A F(y))

Vx(A(x) — B(x)),3x A(x) + 3x B(x)

Vx(M(x) & N(x)),M(a) AIx R(x,a) + 3x N (x)
VxVy G(x,9) F 3x G(x,x)

FVxR(x,x) — Ix 3y R(x,y)

FVy3x(Q() — 0(¥)
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7. N(a) » Vx(M(x) & M(a)),M(a),-M(b) + =N (a)

8. VaVy(G(x,y) = G(9,x)) F VaVy(G(x,y) & G(9,x))

9. Vx(=M(x) vV L(j,x)),Vx(B(x) — L(j,x)),Yx(M(x) V
B(x)) - Vx L(j,x)

F. Write a symbolization key for the following argument, sym-
bolize it, and prove it:

There is someone who likes everyone who likes everyone
that she likes.
.. There is someone who likes herself.

G. Show that each pair of sentences is interderivable.

1. Yx(A(x) — =B(x)), ~3x(A(x) A B(x))
2. Yx(—=A(x) — B(d)), Vx A(x) vV B(d)
3. Ix P(x) = Q(c), Vx(P(x) — Q(c))

H. For each of the following pairs of sentences: If they are inter-
derivable, give proofs to show this. If they are not, construct an
interpretation to show that they are not logically equivalent.

Vx P(x) > Q(e),Yx(P(x) — Q(c))
VxVyVz B(x,9,2),Vx B(x,x,x)

VxVy D(x,9),VyVx D(x,y)

3xVy D(x,y),Vy3x D(x,y)

Vx(R(c,a) & R(x,a)),R(c,a) & VxR(x,a)

Al al o

I. For each of the following arguments: If it is valid in FOL, give
a proof. If it is invalid, construct an interpretation to show that
it is invalid.

JyVx R(x,y) .. Vx Iy R(x,y)

Vx 3y R(x,y) . yVx R(x,y)

Tx(P(x) A Q%)) . Vx(P(x) = ~Q(%))

Vx(S(x) = T(a)),S(d) .. T(a)

Vx(A(x) — B(x)),Vx(B(x) — C(x)) .. Vx(A(x) — C(x))
Ax(D(x) V E(x)),Vx(D(x) — F(x)) .. Ax(D(x) A F(x))
VVy(R(x.9) V R(3.)) - R(j.])

N O
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8. IxAy(R(x,y) V R(y,x)) .. R(j,j)
9. Vx P(x) = VxQ(x),3x-P(x) .. Ix ~Q(x)
10. dx M(x) —» Ax N(x), =Ix N(x) .. Vx =M (x)



CHAPTER 37

Proofs with
quantifiers

In chapter 18 we discussed strategies for constructing proofs us-
ing the basic rules of natural deduction for TFL. The same prin-
ciples apply to the rules for the quantifiers. If we want to prove a
quantifier sentence Y d(a) or Jo (), we can work backward
by justifying the sentence we want by VI or 3I and trying to find
a proof of the corresponding premise of that rule. And to work
forward from a quantified sentence, we apply VE or 3E, as the
case may be.

Specifically, suppose you want to prove Y sf(x). To do so
using VI, we would need a proof of (<) for some name ¢ which
does not occur in any undischarged assumption. To apply the
corresponding strategy, i.e., to construct a proof of Va ol (a) by
working backward, is thus to write 9f(<) above it and then to
continue to try to find a proof of that sentence.

n A(c)
n+l |Ved(x) VL n
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d(<¢) is obtained from d(a) by replacing every free occurrence
of « in d(a) by <. For this to work, ¢ must satisfy the special
condition. We can ensure that it does by always picking a name
that does not already occur in the proof constructed so far. (Of
course, it will occur in the proof we end up constructing—just
not in an assumption that is undischarged at line n + 1.)

To work backward from a sentence Ja of(x) we similarly
write a sentence above it that can serve as a justification for an
application of the 3I rule, i.e., a sentence of the form d(<¢).

n A(c)
n+l | Jed(x) 3Tl n

This looks just like what we would do if we were working back-
ward from a universally quantified sentence. The difference is
that whereas for VI we have to pick a name ¢ which does not
occur in the proof (so far), for 31 we may and in general must
pick a name ¢ which already occurs in the proof. Just like in the
case of VI, it is often not clear which ¢ will work out, and so to
avoid having to backtrack you should work backward from exis-
tentially quantified sentences only when all other strategies have
been applied.

By contrast, working forward from sentences 3x sl(x) gen-
erally always works and you won’t have to backtrack. Working
forward from an existentially quantified sentence takes into ac-
count not just 3z o (a) but also whatever sentence 9% you would
like to prove. It requires that you set up a subproof above %,
wherein @ is the last line, and a substitution instance (<) of
Ja d(a) as the assumption. In order to ensure that the condi-
tion on ¢ that governs JE is satisfied, chose a name ¢ which does
not already occur in the proof.
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m Fax A(x)

n AS
k
k+1 | R dE, m, n—k

You’ll then continue with the goal of proving 9, but now inside a
subproof in which you have an additional sentence to work with,
namely d(c).

Lastly, working forward from Va d(a) means that you can
always write down 9 (<) and justify it using VE, for any name <.
Of course, you wouldn’t want to do that willy-nilly. Only certain
names < will help in your task of proving whatever goal sentence
you are working on. So, like working backward from Jx o(x),
you should work forward from Va 4 (a) only after all other strate-
gies have been applied.

Let’s consider as an example the argument Vx(A4(x) — B) ..
Jx A(x) — B. To start constructing a proof, we write the premise
at the top and the conclusion at the bottom.

1 |Vx(A(x)—>B) PR

n | Ax A(x) > B

The strategies for connectives of TFL still apply, and you should
apply them in the same order: first work backward from condi-
tionals, negated sentences, conjunctions, and now also universal
quantifiers, then forward from disjunctions and now existential
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quantifiers, and only then try to apply —E, =E, VI, VE, or 3I. In
our case, that means, working backward from the conclusion:

1 Vx(A(x) - B) PR

2 Ax A(x) AS

n—1 B

n dx A(x) —» B -1, 2-(n-1)

Our next step should be to work forward from 3x A(x) on line 2.
For that, we have to pick a name not already in our proof. Since
no names appear, we can pick any name, say ‘d’

1 Vx(A(x) —» B) PR

2 dx A(x) AS

3 AS

n—2

n—1 JE, 2, 3-(n - 2)
n dx A(x) > B - 2-(n-1)

Now we’ve exhausted our primary strategies, and it is time to
work forward from the premise Vx(4(x) — B). Applying VE
means we can justify any instance of A(<) — B, regardless of
what ¢ we choose. Of course, we’ll do well to choose d, since
that will give us 4(d) — B. Then we can apply —E to justify B,
finishing the proof.
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1 |Vx(4(x) » B) PR

2 Ax A(x) AS

3 A(d) AS

4 A(d) - B VE1

5 B —E, 4,3
6 B 3E, 2, 3-5
7

dx A(x) —» B -1, 2-6

Now let’s construct a proof of the converse. We begin with

1 |E]xA(x)—>B PR

n | Yx(A(x) — B)

Note that the premise is a conditional, not an existentially quanti-
fied sentence, so we should not (yet) work forward from it. Work-
ing backward from the conclusion, Vx(4(x) — B), leads us to
look for a proof of 4(d) — B:

1 dx A(x) - B PR

n-1 | A(d) —» B
n Vx(A(x) > B) VI,n-1

And working backward from 4(d) — B means we should set up
a subproof with 4(d) as an assumption and B as the last line:
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1 Ax A(x) - B PR

2 A(d) AS

n—2 B

n—1 1| A(d) — B —I, 2—(n - 2)
n Vx(A(x) > B) VI,n-1

Now we can work forward from the premise on line 1. That’s
a conditional, and its consequent happens to be the sentence B
we are trying to justify. So we should look for a proof of its
antecedent, 3x A(x). Of course, that is now readily available, by
3l from line 2, and we’re done:

1 |3xA(x) > B PR

2 A(d) AS

3 Jx A(x) d1, 2

4 B —E 1,3
5| A(d)—> B —I, 24
6 | Vx(4A(x) > B) VL5

Practice exercises

A. Use the strategies to find proofs for each of the following ar-
guments and theorems:

A — VxB(x) .. Vx(4A - B(x))

Ax(A — B(x)) .. A — Jx B(x)

Vx(A(x) A B(x)) < (Vx A(x) AVx B(x))
Ax(A(x) V B(x)) & (Ix A(x) v Ax B(x))
AVVYxB(x))..Vx(AV B(x))

U2 b M
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6. Vx(A(x) » B) .. 3x A(x) — B
7. dx(A(x) > B) .. Vx A(x) — B
8. Vx(A(x) — Iy A(y))

Use only the basic rules of TFL in addition to the basic quantifier
rules.

B. Use the strategies to find proofs for each of the following ar-
guments and theorems:

1. Vx R(x,x) .. Vx 3y R(x,y)
2. VxVyVz[(R(x,y) A R(y,2)) = R(x,2)]
S VaVy[R(x,9) = Vz(R(y,2) = R(x,2))]
3. VaVyVz[(R(x,9) AR(y,2)) = R(x,2)],
VxVy(R(x.y) — R(y,%))
S VaVyVz[(R(x,9) A R(x,2)) = R(y,2)]
4. YxVy(R(x,y) = R(y,x))
S VaVyVz[(R(x,9) A R(x,2)) = Ju(R(y,u) A R(z,u))]
5. ~3xVy(A(x,y) & =4(y,y))

C. Use the strategies to find proofs for each of the following ar-
guments and theorems:

Vx A(x) — B .. Ax(A(x) — B)
A — Jx B(x) .. 3x(4A — B(x))
Vx(AV B(x)) ... AV VYxB(x))
Fx(A(x) — Vy A(p))

Jx(Fy A(y) — A(x))

U2 b

These require the use of IP. Use only the basic rules of TFL in
addition to the basic quantifier rules.
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Conversion of
quantifiers

In this section, we will add some additional rules to the basic
rules of the previous section. These govern the interaction of
quantifiers and negation.

In chapter 23, we noted that —-3xd is logically equivalent to
Vx —od. We will add some rules to our proof system that govern
this. In particular, we add:

m | Yo oA
—Jed CQ,m
and
m | =dx A
Ve-d CQ,m

Equally, we add:

323
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m | Jx -d
Ved CQ,m
and
m | "Ved
Jx-d CQ,m

Practice exercises

A. Show in each case that the sentences are inconsistent:

S(a) > T(m), T(m) > S(a),T(m) A=S(a)

—3x R(x,a),YxVy R(y,x)

—3x 3y L(x,y),L(a,a)

Vx(P(x) — 0Q(x)),Yz2(P(z) — R(2)),VyP(y),=0Q(a) A
—R(b)

el

B. Show that each pair of sentences is interderivable:

1. Vx(A(x) — —=B(x)),~3x(A(x) A B(x))
2. Yx(—=A(x) — B(d)),Yx A(x) vV B(d)

C. In chapter 24, we considered what happens when we move
quantifiers ‘across’ various logical operators. Show that each pair
of sentences is interderivable:

Vx(F(x) A G(a)),VYx F(x) A G(a)
Ax(F(x) vV G(a)),3x F(x) V G(a)
Vx(G(a) — F(x)),G(a) —> Vx F(x)
Vx(F(x) — G(a)),3x F(x) — G(a)
Ax(G(a) - F(x)),G(a) — 3x F(x)
Ax(F(x) — G(a)),Vx F(x) — G(a)

S ®



CHAPTER 38. CONVERSION OF QUANTIFIERS 325

NB: the variable ‘x’ does not occur in ‘G(a)’. When all the quan-
tifiers occur at the beginning of a sentence, that sentence is said
to be in prenex normal form. These equivalences are sometimes
called prenexing rules, since they give us a means for putting any
sentence into prenex normal form.



CHAPTER 39

Rules for
identity

In chapter 30, we mentioned the philosophically contentious the-
sis of the identity of indiscernibles. This is the claim that objects
which are indiscernible in every way are, in fact, identical to each
other. It was also mentioned that we will not subscribe to this
thesis. It follows that, no matter how much you learn about two
objects, we cannot prove that they are identical. That is unless,
of course, you learn that the two objects are, in fact, identical,
but then the proof will hardly be very illuminating.

The general point, though, is that no sentences which do not
already contain the identity predicate could justify an inference
to ‘a = . So our identity introduction rule cannot allow us to
infer to an identity claim containing two different names.

However, every object is identical to itself. No premises, then,
are required in order to conclude that something is identical to
itself. So this will be the identity introduction rule:
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Notice that this rule does not require referring to any prior
lines of the proof. For any name ¢, you can write ¢ = ¢ on any
line, with only the =I rule as justification.

Our elimination rule is more fun. If you have established
‘a = b’, then anything that is true of the object named by ‘a’
must also be true of the object named by ‘4’. For any sentence
with ‘@’ in it, you can replace some or all of the occurrences of
‘@’ with ‘0> and produce an equivalent sentence. For example,
from ‘R(a,a)’ and ‘a = §’, you are justified in inferring ‘R(a,b)’,
‘R(b,a)’ or ‘R(b,b)’. More generally:

m | a==0
n |d(...a...a...)
A(...6...a...) =E, m, n

The notation here is as for 3I. So A(...« ...« ...) is a for
mula containing the name «, and d(...6 ...« ...) is a formula
obtained by replacing one or more instances of the name « with
the name 6. Lines m and n can occur in either order, and do not
need to be adjacent, but we always cite the statement of identity
first. Symmetrically, we allow:

m | a==6
n |dA(..6...6...)
A(...w...6...) =E,m,n

This rule is sometimes called Leibniz’s Law, after Gottfried
Leibniz.

To see the rules in action, we will prove some quick results.
First, we will prove that identity is symmetric:
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1 AS

2 =I

3 =E, 1, 2
4 la=b—ob=a —I,1-3
5 |Vy(a=y—>y=a) VI, 4

6 | VaVy(x=y —-y=x) VL5

We obtain line 3 by replacing one instance of ‘@’ in line 2 with
an instance of ‘0’; this is justified given ‘a = §’.
Second, we will prove that identity is transitive:

1 a=bAb=c AS

2 a=1b AE, 1
3 b=c¢ AE, 1
4 a=c =E, 2, 3
S5l(a=bAb=¢c)—>a=c¢ -1, 14
6 |Vz((a=bAb=2) > a=2) VI, 5

7 | VyVz((a=yAy=2) > a=2) VI, 6

8 | VaVyVaz((x =yAy=2) - x=2) VL7

We obtain line 4 by replacing ‘4’ in line 3 with ‘a’; this is justified
given ‘a = b’.
Practice exercises

A. For each of the following claims, provide an FOL proof that
shows it is true.

1. P(a) VQ(5),0(b) > b=c,~P(a)r Q(c)
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2. m=nVn=o0,A(n)+ A(m)V A(o)

3. Yo x = m,R(m,a) + Ix R(x,x)

4. VxVy(R(x,9) = x=9y) + R(a,b) = R(b,a)

5. ~3x—x=mt+VYxVy(P(x) = P(y))

6. Ix J(x),Ix-J(x) FIxTy-x =y

7. Vx(x =n o M(x)),Yx(0(x) V-M(x)) + O(n)

8. Ix D(x),Vx(x = p & D(x)) + D(p)

9. 3x[(K(x) AVy(K(y) > x =) A B(x)],K(d) + B(d)
0

10. + P(a) > Vx(P(x) V—-x =a)

B. Show that the following are interderivable:

> Ax([F(x) AVY(F(y) > x =y)] Ax =n)
> F(n) AVy(F(y) = n=y)

And hence that both have a decent claim to symbolize the En-
glish sentence ‘Nick is the F’.

C. In chapter 26, we claimed that the following are logically
equivalent symbolizations of the English sentence ‘there is ex-
actly one F’:

> Jx F(x) AVxYy[(F(x) AF(y) — x =y
> 3x[F(x) AVy(F(y) - x = y)]
> AxVy(F(y) < x=y)

Show that they are all interderivable. (Hint: to show that three
claims are interderivable, it suffices to show that the first proves
the second, the second proves the third and the third proves the
first; think about why.)

D. Symbolize the following argument

There is exactly one F.
There is exactly one G.
Nothing is both F and G.
. There are exactly two things that are either ¥ or G.

And offer a proof of it.
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Derived rules

As in the case of TFL, we first introduced some rules for FOL
as basic (in chapter 36), and then added some further rules for
conversion of quantifiers (in chapter 38). In fact, the CQ rules
should be regarded as derived rules, for they can be derived from
the basic rules of chapter 36. (The point here is as in chapter 21.)

Here is a justification for the first CQ rule:

m
m+1
m+2
m+3
m+4
m+5

m+6

Vx —A(x)

A(c)
-A(c)
1

1

—3dx A(x)

dx A(x)

AS

AS

VE, m

-E, m+3,m+2

dE, m+1, (m + 2)—(m + 4)
=1, (m + 1)—(m + 5)

Here is a justification of the third CQ rule:
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m
m+1
m+2
m+ 3
m+4
m+5

m+6

Ax —A(x)

—|A(€)
A(e)

1

1

-Vx A(x)

Vx A(x)

AS

AS

VE, m+1
-E,m+2,m+3

3E, m, (m + 2)—(m + 4)

=1, (m + 1)—(m + 5)

This explains why the CQ rules can be treated as derived. Similar
justifications can be offered for the other two CQ rules.

Practice exercises

A. Offer proofs which justify the addition of the second and
fourth CQ rules as derived rules.
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Proofs and
semantics

We have used two different turnstiles in this book. This:
5241,8242,. .. ,Sﬁn F B

means that there is some proof which ends with € and whose
only undischarged assumptions are among $1,ds,...,94,. This
is a proof-theoretic notion. By contrast, this:

di,dy,... . d, EG

means that no valuation (or interpretation) makes all of
d1,dy,...,d, true and € false. This concerns assignments of
truth and falsity to sentences. It is a semantic notion.

It cannot be emphasized enough that these are different no-
tions. But we can emphasize it a bit more: They are different no-
tions.

Once you have internalised this point, continue reading.

Although our semantic and proof-theoretic notions are differ-
ent, there is a deep connection between them. To explain this
connection,we will start by considering the relationship between
validities and theorems.
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To show that a sentence is a theorem, you need only produce
a proof. Granted, it may be hard to produce a twenty line proof,
but it is not so hard to check each line of the proof and confirm
that it is legitimate; and if each line of the proof individually is
legitimate, then the whole proof is legitimate. Showing that a sen-
tence is a validity, though, requires reasoning about all possible
interpretations. Given a choice between showing that a sentence
is a theorem and showing that it is a validity, it would be easier
to show that it is a theorem.

Contrawise, to show that a sentence is not a theorem is hard.
We would need to reason about all (possible) proofs. That is
very difficult. However, to show that a sentence is not a validity,
you need only construct an interpretation in which the sentence is
false. Granted, it may be hard to come up with the interpretation;
but once you have done so, it is relatively straightforward to check
what truth value it assigns to a sentence. Given a choice between
showing that a sentence is not a theorem and showing that it is
not a validity, it would be easier to show that it is not a validity.

Fortunately, a sentence is a theorem if and only if it is a validity.
As a result, if we provide a proof of d on no assumptions, and
thus show that o is a theorem, i.e., + o, we can legitimately
infer that o is a validity, i.e., £ of. Similarly, if we construct an
interpretation in which o is false and thus show that it is not a
validity, i.e., # o, it follows that o is not a theorem, i.e., ¥ d.

More generally, we have the following powerful result:

l di,dy, ... . Ay - Biff dq,dy,....9d, B

This shows that, whilst provability and entailment are different
notions, they are extensionally equivalent. As such:
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> An argument is valid iff the conclusion can be proved from
the premises.

v

A sentence is a validity iff it is a theorem.

v

Two sentences are equivalent iff they are interderivable.

A4

Sentences are jointly satisfiable iff they are jointly consis-
tent.

For this reason, you can pick and choose when to think
in terms of proofs and when to think in terms of valua-
tions/interpretations, doing whichever is easier for a given task.
The table on the next page summarizes which is (usually) easier.

It is intuitive that provability and semantic entailment should
agree. But—let us repeat this—do not be fooled by the similarity
of the symbols ‘¢’ and ‘+’. These two symbols have very differ-
ent meanings. The fact that provability and semantic entailment
agree is not an easy result to come by.

In fact, demonstrating that provability and semantic entail-
ment agree is, very decisively, the point at which introductory
logic becomes intermediate logic.
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PART VIII

Modal logic



CHAPTER 42

Introducing

modal logic

Modal logic (ML) is the logic of modalities, ways in which a state-
ment can be true. Necessity and possibility are two such modalities:
a statement can be true, but it can also be necessarily true (true
no matter how the world might have been). For instance, logical
truths are not just true because of some accidental feature of the
world, but true come what may. A possible statement may not
actually be true, but it might have been true. We use O to express
necessity, and ¢ to express possibility. So you can read Od as Iz
is necessarily the case that l, and Od as It is possibly the case that A.

There are lots of different kinds of necessity. It is Aumanly
impossible for me to run at 10omph. Given the sorts of creatures
that we are, no human can do that. But still, it isn’t physically
impossible for me to run that fast. We haven’t got the technology to
do it yet, but it is surely physically possible to swap my biological
legs for robotic ones which could run at 10omph. By contrast,
it is physically impossible for me to run faster than the speed of
light. The laws of physics forbid any object from accelerating up
to that speed. But even that isn’t logically impossible. It isn’t a
contradiction to imagine that the laws of physics might have been
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different, and that they might have allowed objects to move faster
than light.

Which kind of modality does ML deal with? A/l of them! ML
is a very flexible tool. We start with a basic set of rules that
govern O and ¢, and then add more rules to fit whatever kind
of modality we are interested in. In fact, ML is so flexible that
we do not even have to think of O and ¢ as expressing necessity
and possibility. We might instead read O as expressing provability,
so that 09 means It is provable that 9, and O means It is not
refutable that 9. Similarly, we can interpret O to mean S knows
that Al or § believes that A. Or we might read O as expressing
moral obligation, so that Od means It is morally obligatory that A,
and Od means It is morally permissible that 1. All we would need
to do is cook up the right rules for these different readings of O
and <.

A modal formula is one that includes modal operators such
as O and ¢. Depending on the interpretation we assign to O
and ¢, different modal formulas will be provable or valid. For
instance, 09 — o might say that “if o is necessary, it is true”,
if O is interpreted as necessity. It might express “if 4 is known,
then it is true”, if O expresses known truth. Under both these
interpretations, O — ¢ is valid: All necessary propositions are
true come what may, so are true in the actual world. And if a
proposition is known to be true, it must be true (one can’t know
something that’s false). However, when O is interpreted as “it is
believed that” or “it ought to be the case that”, od — d is not
valid: We can believe false propositions. Not every proposition
that ought to be true is in fact true, e.g., “Every murderer will be
brought to justice.” This ought to be true, but it isn’t.

We will consider different kinds of systems of ML. They differ
in the rules of proof allowed, and in the semantics we use to de-
fine our logical notions. The different systems we’ll consider are
called K, T, S4, and S5. K is the basic system; everything that is
valid or provable in K is also provable in the others. But there are
some things that K does not prove, such as the formula 04 — 4
for sentence letter 4. So K is not an appropriate modal logic for
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necessity and possibility (where 09 — o should be provable).
This is provable in the system T, so T is more appropriate when
dealing with necessity and possibiliity, but less appropriate when
dealing with belief or obligation, since then 09 — ¢ should not
(always) be provable. The perhaps best system of ML for neces-
sity and possibility, and in any case the most widely accepted, is
the strongest of the systems we consider, S5.

42.1 The Language of ML

In order to do modal logic, we have to do two things. First, we
want to learn how to prove things in ML. Second, we want to
see how to construct interpretations for ML. But before we can
do either of these things, we need to explain how to construct
sentences in ML.

The language of ML is an extension of TFL. We could have
started with FOL, which would have given us Quantified Modal
Logic (OML). QML is much more powerful than ML, but it is
also much, much more complicated. So we are going to keep
things simple, and start with TFL.

Just like TFL, ML starts with an infinite stock of atoms. These
are written as capital letters, with or without numerical sub-
scripts: A, B, ... A1, By, ... We then take all of the rules about
how to make sentences from TFL, and add two more for O and ¢:
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1. Every atom of ML is a sentence of ML.

2. If A is a sentence of ML, then -9 is a sentence of ML.

3. If of and % are sentences of ML, then (o A %) is a
sentence of ML.

4. If of and % are sentences of ML, then (o vV %) is a
sentence of ML.

5. If o and 9B are sentences of ML, then (o — ) is a
sentence of ML.

6. If o and 9 are sentences of ML, then (d < %) is a

sentence of ML.

If o is a sentence of ML, then Od is a sentence of ML.

If A is a sentence of ML, then Od is a sentence of ML.

9. Nothing else is a sentence of ML.

S

Here are some examples of ML sentences:

A

PvQ

)|

CvoD

oo(4d — R)

OO(S A (Z & (W v $0)))
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Natural
deduction for
ML

Now that we know how to make sentences in ML, we can look at
how to prove things in ML. We will use  to express provabil-
ity. So d1,dy,...d, + € means that € can be proven from
dy,dy,...d,. However, we will be looking at a number of dif-
ferent systems of ML, and so it will be useful to add a subscript
to indicate which system we are working with. So for example,
if we want to say that we can prove 6 from d1,9y,...d, in sys-
tem K, we will write: gq,dy,...d, g 6.

431 System K

We start with a particularly simple system called K, in honour of
the philosopher and logician Saul Kripke. K includes all of the
natural deduction rules from TFL, including the derived rules as
well as the basic ones. K then adds a special kind of subproof,
plus two new basic rules for 0.

341
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The special kind of subproof looks like an ordinary subproof,
except it has a Oin its assumption line instead of a formula. We
call them strict subproofs—they allow as to reason and prove things
about alternate possibilities. What we can prove inside a strict
subproof holds in any alternate possibility, in particular, in alter-
nate possibilities where the assumptions in force in our proof may
not hold. In a strict subproofs, all assumptions are disregarded,
and we are not allowed to appeal to any lines outside the strict
subproof (except as allowed by the modal rules given below).

The OI rule allows us to derive a formula Od if we can de-
rive d inside a strict subproof. It is our fundamental method of
introducing O into proofs. The basic idea is simple enough: if 4
is a theorem, then O should be a theorem too. (Remember that
to call o a theorem is to say that we can prove o without relying
on any undischarged assumptions.)

Suppose we wanted to prove 0(A4 — A4). The first thing we
need to do is prove that 4 — A is a theorem. You already know
how to do that using TFL. You simply present a proof of 4 — 4
which doesn’t start with any premises, like this:

1 A AS
2 A R, 1
3| A—> A4 —I,12

But to apply 0OI, we need to have proven the formula inside a strict
subproof. Since our proof of 4 — 4 makes use of no assumptions
at all, this is possible.

1 O AS

2 _A AS

3 A R, 2

4 A— A -1, 2-3

5(oAd4—-4) 0oll14
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m o AS
n d
oy al, m—n
No line above line m may be cited by any rule within the

strict subproof begun at line m unless the rule explicitly
allows it.

It is essential to emphasize that in strict subproof you can-
not use any rule which appeals to anything you proved outside
of the strict subproof. There are exceptions, e.g., the OE rule be-
low. These rules will explicitly state that they can be used inside
strict subproofs and cite lines outside the strict subproof. This
restriction is essential, otherwise we would get terrible results.

For example, we could provide the following proof to vindicate
A .. o4:

1|4 PR

2 _|:| AS

3 ’7 incorrect use of R, 1
4 | od ol, 2-3

This is not a legitimate proof, because at line 3 we appealed to
line 1, even though line 1 comes before the beginning of the strict
subproof at line 2.

We said above that a strict subproof allows us to reason about
arbitrary alternate possible situations. What can be proved in a
strict subproof holds in all alternate possible situtations, and so is
necessary. This is the idea behind the OI rule. On the other hand,
if we’ve assumed that something is necessary, we have therewith
assumed that it is true in all alternate possbile situations. Hence,
we have the rule OE:
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m | Ood

o AS

n A oOE, m

OE can only be applied if line m (containing 0OA4) lies out-
side of the strict subproof in which line » falls, and this
strict subproof is not itself part of a strict subproof not
containing m.

OE allows you to assert o inside a strict subproof if you have

09 outside the strict subproof. The restriction means that you
can only do this in the first strict subproof, you cannot apply the
OE rule inside a nested strict subproof. So the following is not

allowed:
1 | od
2 ] AS
3 o AS
4 9 incorrect use of OE, 1

The incorrect use of OF on line 4 violates the condition, because
although line 1 lies outside the strict subproof in which line 4
falls, the strict subproof containing line 4 lies inside the strict
subproof beginning on line 2 which does not contain line 1.

Let’s begin with an example.
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1 | o4 PR

2 | OB PR

3 m] AS

4 7 oE, 1
5 B oE, 2
6 AANB AL 4,5
7 |oAAAB) O, 3-7

We can also mix regular subproofs and strict subproofs:

1 |o(4— B) PR

2 m| AS

3 ] AS

4 7 oE, 2

5 A— B @QOE1

6 B —E, 4,5
7 OB ol, 3-6
8 | 04 —» OB -1, 2-7

This is called the Distribution Rule, because it tells us that O ‘dis-
tributes’ over —.

The rules OI and OE look simple enough, and indeed K is a
very simple system! But K is more powerful than you might have
thought. You can prove a fair few things in it.



CHAPTER 43. NATURAL DEDUCTION FOR ML 346

43-2 Possibility

In the last subsection, we looked at all of the basic rules for K.
But you might have noticed that all of these rules were about
necessity, 0, and none of them were about possibility, ¢. That’s
because we can define possibility in terms of necessity:

od =df -0

In other words, to say that o is possibly true, is to say that o
is not necessarily false. As a result, it isn’t really essential to add
a ¢, a special symbol for possibility, into system K. Still, the
system will be much easier to use if we do, and so we will add the
following definitional rules:

m | —~O-d

od Defo, m
m | od

-0 Def(),m

Importantly, you should not think of these rules as any real
addition to K: they just record the way that ¢ is defined in terms
of O.

If we wanted, we could leave our rules for K here. But it
will be helpful to add some Modal Conversion rules, which give us
some more ways of flipping between 0O and ¢:
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m -0Od

Oo-sd MC,m
m | O-d

-0Od MC, m
m | =od

O-o MC, m
m o-d

-od  MC, m

These Modal Conversion Rules are also no addition to the
power of K, because they can be derived from the basic rules,
along with the definition of <.

In system K, using Def$ (or the modal conversion rules), one
can prove ¢4 < —0-A4. When laying out system K, we started
with O as our primitive modal symbol, and then defined ¢ in
terms of it. But if we had preferred, we could have started with ¢
as our primitive, and then defined O as follows: Od =47 =09,
There is, then, no sense in which necessity is somehow more
Jfundamental than possibility. Necessity and possibility are exactly
as fundamental as each other.

43.3 System T

So far we have focussed on K, which is a very simple modal
system. K is so weak that it will not even let you prove o from
Od. But if we are thinking of O as expressing necessity, then we
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will want to be able to make this inference: if d is necessarily true,
then it must surely be zrue!

This leads us to a new system, T, which we get by adding the
following rule to K:

m | Ood

n | A RT, m

The line n on which rule RT is applied must znot lie in a
strict subproof that begins after line m.

The restriction on rule T is in a way the opposite of the re-
striction on OE: you can only use OE in a nested strict subproof,
but you cannot use T in a nested strict subproof.

We can prove things in T which we could not prove in K,
e.g., 04— A.

43.-4 System S4

T allows you to strip away the necessity boxes: from Od, you
may infer of. But what if we wanted to add extra boxes? That is,
what if we wanted to go from Od to oOd? Well, that would be no
problem, if we had proved 0Od by applying OI to a strict subproof
of d which itself does not use OE. In that case, o is a tautology,
and by nesting the strict subproof inside another strict subproof
and applying 0OI again, we can prove O09. For example, we could
prove OO(P — P) like this:
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1 m] AS

2 _|:| AS

3 _P AS

4 P R, 3

5 P—->P —I, 3-4
6 o(P - P) 0Ol 2-5
7 | oo(P — P) ol, 1-6

But what if we didn’t prove O in this restricted way, but used
OE inside the strict subproof of d. If we put that strict subproof
inside another strict subproof, the requirement of rule OE to not
cite a line containing O9 which lies in another strict subproof
that has not yet concluded, is violated. Or what if Od were just
an assumption we started our proof with? Could we infer oo
then? Not in T, we couldn’t. And this might well strike you as a
limitation of T, at least if we are reading O as expressing necessity.
It seems intuitive that if o is necessarily true, then it couldn’t have
failed to be necessarily true.

This leads us to another new system, S4, which we get by
adding the following rule to T:
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m | Ood

| AS

n od R4, m

Note that R4 can only be applied if line m (containing 04)
lies outside of the strict subproof in which line # falls, and
this strict subproof is not itself part of a strict subproof not
containing m.

Rule R4 looks just like OE, except that instead of yielding o/
from Od it yields Od inside a strict subproof. The restriction
is the same, however: R4 allows us to “import” Od into a strict
subproof, but not into a strict subproof itself nested inside a strict
subproof. However, if that is necessary, an additional application
of R4 would have the same result.

Now we can prove even more results. For instance:

1 o4 AS

2 O AS

3 )| R4,1

4 ood oI, 2-3
5 | 0Ad—-ood -1, 1-6

Similarly, we can prove &4 — GA. This shows us that as well
as letting us add extra boxes, S4 lets us delete extra diamonds: from
O Od, you can always infer ¢d.
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43.5 System S5

In S4, we can always add a box in front of another box. But S4
does not automatically let us add a box in front of a diamond.
That is, S4 does not generally permit the inference from ¢4l to
09, But again, that might strike you as a shortcoming, at least
if you are reading 0O and ¢ as expressing necessity and possibility.
It seems intuitive that if of is possibly true, then it couldn’t have
Jailed to be possibly true.

This leads us to our final modal system, S5, which we get by
adding the following rule to S4:

m | -OdA
m| AS
n -0 R5,m

Rule R5 can only be applied if line m (containing —0Od)
lies outside of the strict subproof in which line # falls, and
this strict subproof is not itself part of a strict subproof not
containing line m.

This rule allows us to show, for instance, that 04 +s5 OA4:
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1 |oo4 PR

2 | ~o-o4d Defo, 1
3 -04 AS

4 O AS

5 -04 R5,3

6 o-0A4 ol, 4-5

7 1 -E, 2, 6
8 | o4 1P, 3-7

So, as well as adding boxes in front of diamonds, we can also
delete diamonds in front of boxes.

We got S5 by adding the rule R5 to S4. In fact, we could have
added rule R5 to T, left out rule R4, and obtained an equivalent
system. That’s because everything we can prove using rule R4
can also be proved using RT together with R5. For instance,
here is a proof that shows 04 +s5 004 without using R4:
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© 0 N S G W N -

O
w N R o

14

04

Oo-04

-04

-0-04

04

ood

PR

AS

RT, 2
-E, 1, 3
-1, 24
AS

AS

AS

R5, 7
al, 8-9
R5, 5
~E, 10, 11
IP, 7-12
ol, 6-13

S5 is strictly stronger than S4: there are things which can be proved
in 85, but not in S4 (e.g., ©0A4 — 0O4).

The important point about S5 can be put like this: if you have

a long string of boxes and diamonds, in any combination what-
soever, you can delete all but the last of them. So for example,
©0o©00¢0A can be simplified down to just OA4.

Practice exercises

A. Provide proofs for the following:

1. 0O(4 A B) rxk OA AOB
2. OAAOB+rg O(AAB)
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3. 0AvOBrg O(AV B)
4. O(A & B) rg 04 < OB

B. Provide proofs for the following (without using Modal Con-
version!):

1. ~O0A4 +g O—-4
2. O—A+g ~OA
3. -OA g O-4
4. O-Arg 704

C. Provide proofs of the following (and now feel free to use Modal
Conversion!):

1. 0(4 — B),0A+k OB
2. 04 +g ~O—4
3. -0-4 g 04

D. Provide proofs for the following:

1. P+1 OP
2. +t (AA B)V (-O4vVv -0OB)

E. Provide proofs for the following:

1. 0(od — B),0(oB — C),04 +s4 0OC
2. OA+ge O(OA4 V B)
3. <>(>A Fs4 <>A

F. Provide proofs in S5 for the following:

1. =0-4,0B g5 O(CA A OB)
2. Args OCA
3. OOAtrss OA
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Semantics for
ML

So far, we have focussed on laying out various systems of Natural
Deduction for ML. Now we will look at the semantics for ML. A
semantics for a language is a method for assigning truth-values
to the sentences in that language. So a semantics for ML is a
method for assigning truth-values to the sentences of ML.

441 Interpretations of ML

The big idea behind the semantics for ML is this. In ML, sen-
tences are not just true or false, full stop. A sentence is true or
false at a given possible world, and a single sentence may well be
true at some worlds and false at others. We then say that Od is
true iff of is true at every world, and ¢d is true iff o is true at
some world.

That’s the big idea, but we need to refine it and make it more
precise. To do this, we need to introduce the idea of an interpre-
tation of ML. The first thing you need to include in an interpreta-
tion is a collection of possible worlds. Now, at this point you might
well want to ask: What exactly is a possible world? The intuitive
idea is that a possible world is another way that this world could

355
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have been. But what exactly does that mean? This is an excellent
philosophical question, and we will look at it in a lot of detail
later. But we do not need to worry too much about it right now.
As far as the formal logic goes, possible worlds can be anything
you like. All that matters is that you supply each interpretation
with a non-empty collection of things labelled POSSIBLE WORLDS.

Once you have chosen your collection of possible worlds, you
need to find some way of determining which sentences of ML
are true at which possible worlds. To do that, we need to intro-
duce the notion of a valuation function. Those of you who have
studied some maths will already be familiar with the general idea
of a function. But for those of you who haven’t, a function is a
mathematical entity which maps arguments to values. That might
sound a little bit abstract, but some familiar examples will help.
Take the function x + 1. This is a function which takes in a num-
ber as argument, and then spits out the next number as value. So
if you feed in the number 1 as an argument, the function x+1 will
spit out the number 2 as a value; if you feed in 2, it will spit out 3;
if you feed in 3, it will spit out 4 ... Or here is another example:
the function x + y. This time, you have to feed two arguments
into this function if you want it to return a value: if you feed in
2 and 3 as your arguments, it spits out 5; if you feed in 1003 and
2005, it spits out 3008; and so on.

A valuation function for ML takes in a sentence and a world
as its arguments, and then returns a truth-value as its value. So
if v is a valuation function and w is a possible world, v, () is
whatever truth-value v maps o and w to: if v, (o) = F, then d is
false at world w on valuation v; if v, () = 7', then o is true at
world w on valuation v.

These valuation functions are allowed to map any atomic sen-
tence to any truth-value at any world. But there are rules about
which truth-values more complex sentences get assigned at a
world. Here are the rules for the connectives from TFL:

1. vy(—dl) = T iff vy () = F
2. V(AANRB) =T iff v,(d) =T and v, (B) =T
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3. Vp(AVB) =T iff v,(A) =T or v,,(B) =T, or both

4. V(A — B) =T iff v,(A) = F or v,,(B) = T, or both

5 V(A o B) =T iff vy (d) =T and v, (B) = T, or vy (dA) =
Fand v, (B) =F

So far, these rules should all look very familiar. Essentially, they
all work exactly like the truth-tables for TFL. The only difference
is that these truth-table rules have to be applied over and over
again, to one world at a time.

But what are the rules for the new modal operators, 0 and ¢?
The most obvious idea would be to give rules like these:

> vp(Odd) = T iff Yw' (v (A) = T)
> v (OA) =T iff w’ (v (A) = T)

This is just the fancy formal way of writing out the idea that Od
is true at w just in case o is true at every world, and ¢ is true
at w just in case d is true at some world.

However, while these rules are nice and simple, they turn out
not to be quite as useful as we would like. As we mentioned, ML
is meant to be a very flexible tool. It is meant to be a general
framework for dealing with lots of different kinds of necessity.
As a result, we want our semantic rules for O and ¢ to be a
bit less rigid. We can do this by introducing another new idea:
accessibility relations.

An accessibility relation, R, is a relation between possible
worlds. Roughly, to say that Rwiwy (in English: world wq accesses
world wy) is to say that wy is possible relative to wy. In other
words, by introducing accessibility relations, we open up the idea
that a given world might be possible relative to some worlds but
not others. This turns out to be a very fruitful idea when studying
modal systems. We can now give the following semantic rules for
0 and <:

6. v, (Od) = T iff Ywo(Rwirwy — vy, (d) = T)
7. Vi, (OA) = T iff Jwo(Rwiwg A vy, () =T)
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Or in plain English: Od is true in world w; iff 4 is true in every
world that is possible relative to w;; and ¢d is true in world w;
iff o is true in some world that is possible relative to w;.

So, there we have it. An interpretation for ML consists of
three things: a collection of possible worlds, W; an accessibility
relation, R; and a valuation function, v. The collection of ‘pos-
sible worlds’ can really be a collection of anything you like. It
really doesn’t matter, so long as W isn’t empty. (For many pur
poses, it is helpful just to take a collection of numbers to be your
collection of worlds.) And for now, at least, R can be any rela-
tion between the worlds in W that you like. It could be a relation
which every world in W bears to every world in W, or one which
no world bears to any world, or anything in between. And lastly,
v can map any atomic sentence of ML to any truth-value at any
world. All that matters is that it follows the rules (1)—(7) when it
comes to the more complex sentences.

Let’s look at an example. It is often helpful to present inter-
pretations of ML as diagrams, like this:

C1 2

A -4
-B B

Here is how to read the interpretation off from this diagram. It
contains just two worlds, 1 and 2. The arrows between the worlds
indicate the accessibility relation. So 1 and 2 both access 1, but
neither 1 nor 2 accesses 2. The boxes at each world let us know
which atomic sentences are true at each world: 4 is true at 1
but false at 2; B is false at 1 but true at 2. You may only write
an atomic sentence or the negation of an atomic sentence into
one of these boxes. We can figure out what truth-values the more
complex sentences get at each world from that. For example, on
this interpretation all of the following sentences are true at w:

AN —B, B — 4, A, o-B
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If you don’t like thinking diagrammatically, then you can also
present an interpretation like this:

w: 1,2
R: (1,1),(2,1)
v Vl(A) = T,Vl(B) = F,VQ(A) = F,VQ(B) =T

You will get the chance to cook up some interpretations of your
own shortly, when we start looking at counter-interpretations.

44-2 A Semantics for System K

We can now extend all of the semantic concepts of TFL to cover
ML:

> d1,do,...9, .. 6 is MODALLY VALID iff there is no world
in any interpretation at which d1,ds,. .. d, are all true
and €6 is false.

> dl is a MODAL TRUTH iff 4 is true at every world in every
interpretation.

> 9 is a MODAL CONTRADICTION iff o is false at every
world in every interpretation.

> o is MODALLY SATISFIABLE iff o is true at some world in
some interpretation.

(From now on we will drop the explicit ‘modal’ qualifications,
since they can be taken as read.)

We can also extend our use of E. However, we need to add
subscripts again, just as we did with . So, when we want to say
that 81,949, ...d, .. 6 is valid, we will write: s1,9o,...d, Ex 6.

Let’s get more of a feel for this semantics by presenting some
counter-interpretations. Consider the following (false) claim:

-4 g ~OA
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In order to present a counter-interpretation to this claim, we need
to cook up an interpretation which makes —4 true at some world
w, and ~O 4 false at w. Here is one such interpretation, presented
diagrammatically:

-4 A

It is easy to see that this will work as a counter-interpretation for
our claim. First, =4 is true at world 1. And second, =< A is false
at 1: A is true at 2, and 2 is accessible from 1. So there is some
world in this interpretation where =4 is true and ~<¢ A4 is false, so
it is not the case that =4 g = O A.

Why did we choose the subscript K? Well, it turns out that
there is an important relationship between system K and the def-
inition of validity we have just given. In particular, we have the
following two results:

1. If oAy, Ay,...d, rk 6, then Aq,dy,...9d, Fx 6
o, If dqi,dy,...94, Ex 6, then dq,9dy,...4, rg 6

The first result is known as a soundness result, since it tells us that
the rules of K are good, sound rules: if you can vindicate an argu-
ment by giving a proof for it using system K, then that argument
really is valid. The second result is known as a completeness result,
since it tells us that the rules of K are broad enough to capture
all of the valid arguments: if an argument is valid, then it will be
possible to offer a proof in K which vindicates it.

Now, it is one thing to state these results, quite another to
prove them. However, we will not try to prove them here. But
the idea behind the proof of soundness will perhaps make clearer
how strict subproofs work.

In a strict subproof, we are not allowed to make use of any
information from outside the strict subproof, except what we im-
port into the strict subproof using OE. If we’ve assumed or proved
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Od, by OE, we can used d inside a strict subproof. And in K,
that is the only way to import a formula into a strict subproof. So
everything that can be proved inside a strict subproof must fol-
low from formulas o where outside the strict subproof we have
Od. Let’s imagine that we are reasoning about what’s true in a
possible world in some interpretation. If we know that 0O is true
in that possible world, we know that ¢ is true in all accessible
worlds. So, everything proved inside a strict subproof is true in
all accessible possible worlds. That is why OI is a sound rule.

44-3 A Semantics for System T

A few moments ago, we said that system K is sound and com-
plete. Where does that leave the other modal systems we looked
at, namely T, S4 and S5? Well, they are all unsound, relative to
the definition of validity we gave above. For example, all of these
systems allow us to infer 4 from 04, even though 04 ¥ A.

Does that mean that these systems are a waste of time? Not
at all'! These systems are only unsound relative to the definition
of validity we gave above. (Or to use symbols, they are unsound
relative to kk.) So when we are dealing with these stronger modal
systems, we just need to modify our definition of validity to fit.
This is where accessibility relations come in really handy.

When we introduced the idea of an accessibility relation, we
said that it could be any relation between worlds that you like: you
could have it relating every world to every world, no world to any
world, or anything in between. That is how we were thinking of
accessibility relations in our definition of k. But if we wanted, we
could start putting some restrictions on the accessibility relation.
In particular, we might insist that it has to be reflexive:

Yw Rww

In English: every world accesses itself. Or in terms of relative
possibility: every world is possible relative to itself. If we imposed
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this restriction, we could introduce a new consequence relation,
ET, as follows:

d1,dy,...d, et € iff there is no world in any interpre-
tation which has a reflexive accessibility relation, at which
Aq1,99,.. .94, are all true and 6 is false

We have attached the T subscript to £ because it turns out that
system T is sound and complete relative to this new definition of
validity:

1. If Ay, dAy,...d, b1 6, then d1,99,... 94, T 6
2. If Aq,d4y,...9, T 6, then oA1,d4y,...d, tT 6

As before, we will not try to prove these soundness and complete-
ness results. However, it is relatively easy to see how insisting that
the accessibility relation must be reflexive will vindicate the RT
rule:

m | Od

o/ RT, m

To see this, just imagine trying to cook up a counter-
interpretation to this claim:

oA e A

We would need to construct a world, w, at which 09 was true,
but of was false. Now, if Od is true at w, then of must be true
at every world w accesses. But since the accessibility relation is
reflexive, w accesses w. So o must be true at w. But now o must
be true and false at w. Contradiction!
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44-4 A Semantics for S4

How else might we tweak our definition of validity? Well, we
might also stipulate that the accessibility relation has to be tran-
Sitive:
YwiVwoVws((Rwiwe A Rwows) — Rwiws)

In English: if w; accesses wg, and wy accesses ws, then w; ac-
cesses w3. Or in terms of relative possibility: if w3 is possible
relative to wy, and wy is possible relative to w1, then w3 is possi-
ble relative to w;. If we added this restriction on our accessibility
relation, we could introduce a new consequence relation, kg4, as
follows:

d1,9y,. .. d, Ess 6 iff there is no world in any interpreta-
tion which has a reflexive and transitive accessibility relation,
at which ¢l1,9,. .. d, are all true and 6 is false

We have attached the S4 subscript to k because it turns out
that system S4 is sound and complete relative to this new defini-
tion of validity:

1. If odq,d9,...9d, tss 6, then Aq,dy,...d, Esqy 6
2. If dqi,dg,... A, Egq 6, then d1,49,...9d, Fss 6

As before, we will not try to prove these soundness and complete-
ness results. However, it is relatively easy to see how insisting that
the accessibility relation must be transitive will vindicate the S4
rule:

m | Od
] AS
od R4, m

The idea behind strict subproofs, remember, is that they are
ways to prove things that must be true in all accessible worlds.
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So the R4 rule means that whenever Od is true, O must also
be true in every accessible world. In other words, we must have
OdA Egq OOA.

To see this, just imagine trying to cook up a counter-
interpretation to this claim:

oo Esy OOA

We would need to construct a world, w;, at which O was true,
but ooOd was false. Now, if OOd is false at wq, then wy; must
access some world, w9, at which 0Od is false. Equally, if Od is
false at woy, then w9 must access some world, w3, at which o
is false. We just said that w; accesses wg, and wy accesses ws.
So since we are now insisting that the accessibility relation be
transitive, w, must access w3. And as 09 is true at wy, and ws is
accessible from w1, it follows that 9 must be true at w3. So o is
true and false at w3. Contradiction!

44-5 A Semantics for S5

Let’s put one more restriction on the accessibility relation. This
time, let’s insist that it must also be symmetric:

levwg (Rwle - ngwl)

In English: if w; accesses wg, then wy accesses wq. Or in terms
of relative possibility: if wy is possible relative to w1, then w; is
possible relative to wy. Logicians call a relation that is reflexive,
symmetric, and transitive an equivalence relation. We can now
define a new consequence relation, kg5, as follows:

d1,9y,...d, Ess 6 iff there is no world in any interpre-
tation whose accessibility relation is an equivalence relation, at
which ol1,4,. .. d, are all true and 6 is false

We have attached the S5 subscript to F because it turns out
that system S5 is sound and complete relative to this new defini-
tion of validity:
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1. If oAy, Ay,...d, Fss 6, then sdq,99,... 94, Es5 6
2. If dqi,dy,...94, Ess 6, then sd1,94s,...9d, rs5 6

As before, we will not try to prove these soundness and com-
pleteness results here. However, it is relatively easy to see how
insisting that the accessibility relation must be an equivalence
relation will vindicate the R5 rule:

m | ~OdA
] AS
-0 R5,m

The rule says that if d is not necessary, i.e., false in some
accessible world, it is also not necessary in any accessible possible
world, i.e., we have —Od +g5 O—-OdA.

To see this, just imagine trying to cook up a counter-
interpretation to this claim:

—-0d kg5 O-OA

We would need to construct a world, wq, at which —O¢ was true,
but O-0Od was false. Now, if =09 is true at w;, then w; must
access some world, wy, at which d is false. Equally, if 0-0d is
false at w1, then w; must access some world, wg, at which —-Od
is false. Since we are now insisting that the accessibility relation
is an equivalence relation, and hence symmetric, we can infer
that w3 accesses wi. Thus, w3 accesses wi, and wy accesses wy.
Again, since we are now insisting that the accessibility relation
is an equivalence relation, and hence transitive, we can infer that
w3 accesses wy. But earlier we said that =09 is false at w3, which
implies that o is true at every world which w3 accesses. So o is
true and false at w9. Contradiction!

In the definition of kg5, we stipulated that the accessibility re-
lation must be an equivalence relation. But it turns out that there
is another way of getting a notion of validity fit for S5. Rather
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than stipulating that the accessibility relation be an equivalence
relation, we can instead stipulate that it be a universal relation:

levwz Rw1 w9

In English: every world accesses every world. Or in terms of
relative possibility: every world is possible relative to every world.
Using this restriction on the accessibility relation, we could have
defined kg5 like this:

d1,9y,...d, Ess 6 iff there is no world in any interpre-
tation which has a universal accessibility relation, at which
Aq1,9,...94, are all true and 6 is false.

If we defined kg5 like this, we would still get the same sound-
ness and completeness results for S5. What does this tell us?
Well, it means that if we are dealing with a notion of necessity
according to which every world is possible relative to every world,
then we should use S5. What is more, most philosophers assume
that the notions of necessity that they are most concerned with,
like logical necessity and metaphysical necessity, are of exactly this
kind. So S5 is the modal system that most philosophers use most
of the time.

Practice exercises

A. Present counter-interpretations to the following false claims:

1. =P kg -OP

2. O(P Vv Q) kg OP VOQ
3. kg —O(A A =4)

4. O4AEx 4

B. Present counter-interpretations to the following false claims:

1. OAEgy OCA
2. ©0A,0(0A — B) kg4 OB
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C. Present counter-interpretations to the following false claims:

1. oM — 0),OM et O
2. OA =t Oo4d

Further reading

Modal logic is a large subfield of logic. We have only scratched
the surface. If you want to learn more about modal logic, here
are some textbooks you might consult.

> George E. Hughes and Max J. Cresswell, 4 New Introduction
to Modal Logic, Oxford: Routledge, 1996.

> Graham Priest, An Introduction to Non-Classical Logic, 2nd
ed., Cambridge: Cambridge University Press, 2008.

> James W. Garson, Modal Logic for Philosophers, 2nd ed.,
Cambridge: Cambridge University Press, 2013.

None of these authors formulate their modal proof systems
in quite the way we did, but the closest formulation is given by
Garson.
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CHAPTER 45

Normal forms

45.1 Disjunctive normal form

Sometimes it is useful to consider sentences of a particularly sim-
ple form. For instance, we might consider sentences in which
- only attaches to atomic sentences, or those which are combi-
nations of atomic sentences and negated atomic sentences us-
ing only A. A relatively general but still simple form is that
where a sentence is a disjunction of conjunctions of atomic or
negated atomic sentences. When such a sentence is constructed,
we start with atomic sentences, then (perhaps) attach negations,
then (perhaps) combine using A, and finally (perhaps) combine
using V.

Let’s say that a sentence is in DISJUNCTIVE NORMAL FORM iff
it meets all of the following conditions:

(DNF1) No connectives occur in the sentence other than negations,
conjunctions and disjunctions;

(DNF2) Every occurrence of negation has minimal scope (i.e., any
‘=’ is immediately followed by an atomic sentence);

(DNF3) No disjunction occurs within the scope of any conjunction.

369
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So, here are are some sentences in disjunctive normal form:

A

(AA-BAC)

(AANB)V (AA-B)
(ANB)V(AANBACA-DA=E)
AV (C A=Poy3g A Pozgg AQ)V —B

Note that we have here broken one of the maxims of this book and
temporarily allowed ourselves to employ the relaxed bracketing-
conventions that allow conjunctions and disjunctions to be of ar-
bitrary length. These conventions make it easier to see when a
sentence is in disjunctive normal form. We will continue to help
ourselves to these relaxed conventions, without further comment.

To further illustrate the idea of disjunctive normal form, we
will introduce some more notation. We write ‘+dl’ to indicate
that d is an atomic sentence which may or may not be prefaced
with an occurrence of negation. Then a sentence in disjunctive
normal form has the following shape:

(Fdi A AV (i A AV LV (g AL AEd,)

We now know what it is for a sentence to be in disjunctive normal
form. The result that we are aiming at is:

Disjunctive Normal Form Theorem. For any sentence,
there is an equivalent sentence in disjunctive normal form.

Henceforth, we will abbreviate ‘Disjunctive Normal Form’ by
‘DNF’.
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45.2 Proof of DNF Theorem via truth
tables

Our first proof of the DNF Theorem employs truth tables. We will
first illustrate the technique for finding an equivalent sentence in
DNF, and then turn this illustration into a rigorous proof.

Let’s suppose we have some sentence, S, which contains three
atomic sentences, ‘4’, ‘B’ and ‘C’. The very first thing to do is
fill out a complete truth table for §. Maybe we end up with this:

oo o =
Sl I I S S I B T e
Ha s a0
i e e e B B B RS

As it happens, § is true on four lines of its truth table, namely
lines 1, 3, 7 and 8. Corresponding to each of those lines, we will
write down four sentences, whose only connectives are negations
and conjunctions, where every negation has minimal scope:

1. ‘ANBAC which is true on line 1 (and only then)

2. ‘AN-BAC which is true on line 3 (and only then)

3. “AAN-BAC which is true on line 7 (and only then)
(

4. ““AN-BA-C" which is true on line 8 (and only then)

We now combine all of these conjunctions using V, like so:
(AANBAC)V(AAN-BAC)V(mAAN-BAC)V (mAAN-BA-=C)

This gives us a sentence in DNF which is true on exactly those
lines where one of the disjuncts is true, i.e., it is true on (and only
on) lines 1, 3, 7, and 8. So this sentence has exactly the same
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truth table as §. So we have a sentence in DNF that is logically
equivalent to §, which is exactly what we wanted!

Now, the strategy that we just adopted did not depend on the
specifics of §; it is perfectly general. Consequently, we can use it
to obtain a simple proof of the DNF Theorem.

Pick any arbitrary sentence, §, and let d1,...,9, be the
atomic sentences that occur in §. To obtain a sentence in DNF
that is logically equivalent §, we consider §’s truth table. There
are two cases to consider:

1. 8 is false on every line of its truth table. Then, S is a con-
tradiction. In that case, the contradiction (sd; A —~dy) is in
DNF and logically equivalent to S.

2. 8 is true on at least one line of its truth table. For each line i
of the truth table, let 9%; be a conjunction of the form

(xdy Ao A xdy)

where the following rules determine whether or not to in-
clude a negation in front of each atomic sentence:

> d,, is a conjunct of B; iff o, is true on line i.
> —dl,, is a conjunct of B; iff d, is false on line i.

Given these rules, 9, is true on (and only on) line i of the
truth table which considers all possible valuations of o1,
..., d, (i.e., §’s truth table).

Next, let i1, i, ..., i, be the numbers of the lines of the
truth table where 8§ is true. Now let & be the sentence:

RBiy VR V... VR,

Since § is true on at least one line of its truth table, 9 is
indeed well-defined; and in the limiting case where § is true
on exactly one line of its truth table, & is just 9, , for some
.
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By construction, & is in DNF. Moreover, by construction,
for each line i of the truth table: § is true on line i of the
truth table iff one of @’s disjuncts (namely, 9%;) is true on,
and only on, line i. Hence § and & have the same truth
table, and so are logically equivalent.

These two cases are exhaustive and, either way, we have a sen-
tence in DNF that is logically equivalent to S.

So we have proved the DNF Theorem. Before we say any
more, though, we should immediately flag that we are hereby
returning to the austere definition of a (TFL) sentence, according
to which we can assume that any conjunction has exactly two
conjuncts, and any disjunction has exactly two disjuncts.

45.3 Conjunctive normal form

So far in this chapter, we have discussed disjunctive normal form.
It may not come as a surprise to hear that there is also such a
thing as conjunctive normal form (CNF).

The definition of CNF is exactly analogous to the definition
of DNF. So, a sentence is in CNF iff it meets all of the following
conditions:

(cNF1) No connectives occur in the sentence other than negations,
conjunctions and disjunctions;

(cNrF2) Every occurrence of negation has minimal scope;

(cNF3) No conjunction occurs within the scope of any disjunction.

Generally, then, a sentence in CNF looks like this
(xdi V.. . Vrdi) A2 V. V)AL A (£ V.V 2d,)

where each 9{; is an atomic sentence.
We can now prove another normal form theorem:

Conjunctive Normal Form Theorem. For any sentence,
there is an equivalent sentence in conjunctive normal form.
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Given a TFL sentence, §, we begin by writing down the com-
plete truth table for §.

If § is true on every line of the truth table, then § and (sd; V
—dl1) are logically equivalent.

If 8 is false on at least one line of the truth table then, for every
line on the truth table where § is false, write down a disjunction
(41 V...V xd,) which is false on (and only on) that line. Let
@ be the conjunction of all of these disjuncts; by construction, 6
is in CNF and § and 6 are logically equivalent.

Practice exercises

A. Consider the following sentences:

(A — —|B)

-(4 & B)

(m4AV —(AANB))
(m(4—>B)A(4d—- ()

(=(4AV B) & ((=C A=4) - —B))
((=(AAN=B) > C)AN—=(AAND))

S ®

For each sentence, find an equivalent sentence in DNF and one
in CNF.
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Functional
completeness

Of our connectives, — attaches to a single sentence, and the others
all combine exactly two sentences. We may also introduce the
idea of an n-place connective. For example, we could consider
a three-place connective, ‘©’, and stipulate that it is to have the
following characteristic truth table:

A B C|94,B,C)
T T T F
T T F T
T F T T
T F F F
F T T F
F T F T
F F T F
F F F F

Probably this new connective would not correspond with any nat-
ural English expression (at least not in the way that ‘A’ corre-
sponds with ‘and’). But a question arises: if we wanted to employ
a connective with this characteristic truth table, must we add a
new connective to TFL? Or can we get by with the connectives

375
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we already have (as we can for the connective ‘neither...nor’ for
instance)?

Let us make this question more precise. Say that some con-
nectives are JOINTLY FUNCTIONALLY COMPLETE iff; for any possi-
ble truth table, there is a sentence containing only those connec-
tives with that truth table.

The general point is, when we are armed with some jointly
functionally complete connectives, no characteristic truth table
lies beyond our grasp. And in fact, we are in luck.

Functional Completeness Theorem. The connectives
of TFL are jointly functionally complete. Indeed, the fol-
lowing pairs of connectives are jointly functionally com-
plete:

1. ‘=’ and ‘V’
2. ‘=" and ‘A’
3. (_|’ and ‘_>’

Given any truth table, we can use the method of proving the
DNF Theorem (or the CNF Theorem) via truth tables from chap-
ter 45, to write down a scheme which has the same truth table.
For example, employing the truth table method for proving the
DNF Theorem, we find that the following scheme has the same
characteristic truth table as ©(4, B, C), above:

(AANBA=C)V(AAN=-BAC)V (mAANBA=C)

It follows that the connectives of TFL are jointly functionally com-
plete. We now prove each of the subsidiary results.

Subsidiary Result 1: functional completeness of <=’ and Vv’. Ob-
serve that the scheme that we generate, using the truth table
method of proving the DNF Theorem, will only contain the con-
nectives ‘=’, ‘A’ and ‘V’. So it suffices to show that there is an

equivalent scheme which contains only ‘=’ and ‘v’. To demon-
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strate this, we simply consider that
(A NB) © (~dV —%B)

are logically equivalent.
Subsidiary Result 2: functional completeness of =’ and ‘A’. Exactly
as in Subsidiary Result 1, making use of the fact that

(A VB) & =(=sd A ~RB)

are logically equivalent.

Subsidiary Result 3: functional completeness of =’ and —’. Ex-
actly as in Subsidiary Result 1, making use of these equivalences
instead:

(AVRB) & (~d — B)
(A AB) & =(d — ~B)

Alternatively, we could simply rely upon one of the other two
subsidiary results, and (repeatedly) invoke only one of these two
equivalences.

In short, there is never any need to add new connectives to
TFL. Indeed, there is already some redundancy among the con-
nectives we have: we could have made do with just two connec-
tives, if we had been feeling really austere.

46.1 Individually functionally complete
connectives

In fact, some two-place connectives are individually functionally
complete. These connectives are not standardly included in TFL,
since they are rather cumbersome to use. But their existence

"We're here using the convention that to say that of and 9 are equivalent
can be abbreviated as of & 9. Note that ‘e’ is not a connective like ‘<’, but
a metalinguistic symbol just like ‘€’; compare the discussion of ‘€” and ‘<’ in
section 12.6.
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shows that, if we had wanted to, we could have defined a truth-
functional language that was functionally complete, which con-
tained only a single primitive connective.

The first such connective we will consider is ‘1’, which has the
following characteristic truth table.

d B| A1
T T F
T F T
F T T
F F T

This is often called ‘the Sheffer stroke’, after Henry Sheffer, who
used it to show how to reduce the number of logical connectives in
Russell and Whitehead’s Principia Mathematica.” (In fact, Charles
Sanders Peirce had anticipated Sheffer by about 30 years, but
never published his results, and the Polish philosopher Edward
Stamm published the same result two years before Sheffer.)3 It
is quite common, as well, to call it ‘nand’, since its characteristic
truth table is the negation of the truth table for ‘A’.

“” is functionally complete all by itself. ]

The Functional Completeness Theorem tells us that ‘=’ and
‘v’ are jointly functionally complete. So it suffices to show that,
given any scheme which contains only those two connectives, we
can rewrite it as an equivalent scheme which contains only ‘7’. As
in the proof of the subsidiary cases of the Functional Complete-

?Sheffer, “A set of five independent postulates for Boolean algebras, with
application to logical constants”, Transactions of the American Mathematical Soci-
ety 14 (1913), pp. 481488

3See Peirce’s “A Boolian algebra with one constant”, which dates to c. 1880,
in Peirce’s Collected Papers, vol. 4, pp. 264—5, and Edward Stamm, “Beitrag zur
Algebra der Logik”, Monatshefte fiir Mathematik und Physik 22 (1911), pp. 137—

49-
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ness Theorem, then, we simply apply the following equivalences:
-d < (d7Td)
(AVRB) = (4Td)T(BTR))

to the Subsidiary Result 1..
Similarly, we can consider the connective ‘|’:

d B|d]B
T T| F
T F| F
F T| F
F F| T

This is sometimes called the ‘Peirce arrow’ (Peirce himself called
it ‘ampheck’). More often, though, it is called ‘nor’, since its
characteristic truth table is the negation of ‘V’, that is, of ‘neither

.nor....

¢}’ is functionally complete all by itself.

As in the previous result for T, although invoking the equiva-
lences:

—dl & (sd | o)
(ANB) = (AL d) L (B RB))

and Subsidiary Result 2..

46.2 Failures of functional completeness

In fact, the only two-place connectives which are individually
functionally complete are “I” and ‘|’. But how would we show
this? More generally, how can we show that some connectives
are not jointly functionally complete?

The obvious thing to do is to try to find some truth table
which we cannot express, using just the given connectives. But
there is a bit of an art to this.
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To make this concrete, let’s consider the question of whether
‘v’ is functionally complete all by itself. After a little reflection,
it should be clear that it is not. In particular, it should be clear
that any scheme which only contains disjunctions cannot have
the same truth table as negation, i.e.:

d | —-d
T| F
F| T

The intuitive reason, why this should be so, is simple: the top
line of the desired truth table needs to have the value False; but
the top line of any truth table for a scheme which only contains
V will always be True. The same is true for A, —, and &.

V2, ‘N, ‘=7, and ‘<>’ are not functionally complete by
themselves.

In fact, the following is true:

The only two-place connectives that are functionally com-
plete by themselves are ‘7" and ‘| .

This is of course harder to prove than for the primitive con-
nectives. For instance, the “exclusive or” connective does not
have a T in the first line of its characteristic truth table, and so
the method used above no longer suffices to show that it cannot
express all truth tables. It is also harder to show that, e.g., ‘<’
and ‘=’ together are not functionally complete.



CHAPTER 47

Proving
equivalences

471 Substitutability of equivalents

Recall from section 12.2 that % and @ are equivalent (in TFL)
iff, for every valuation, their truth values agree. We have seen
many examples of this and used both truth tables and natural
deduction proofs to establish such equivalences. In chapter 45
we’ve even proved that every sentence of TFL is equivalent to one
in conjunctive and one in disjunctive normal form. If &% and @
are equivalent, they always have the same truth value, either one
entails the other, and from either one you can prove the other.

Equivalent sentences are not the same, of course: the sen-
tences -—4 and 4 may always have the same truth value, but
the first starts with the ‘=’ symbol while the second doesn’t. But
you may wonder if it’s always true that we can replace one of a
pair of equivalent sentences by the other, and the results will be
equivalent, too. For instance, consider -—-4 — B and 4 — B.
The second results from the first by replacing ‘-4’ by ‘4’. And
these two sentences are also equivalent.

This is a general fact, and it is not hard to see why it is true.
In any valuation, we compute the truth value of a sentence “from
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the inside out.” So when it comes to determining the truth value
of ‘==4 — B’, we first compute the truth value of ‘--4’, and
the truth value of the overall sentence then just depends on that
truth value (true or false, as the case may be) and the rest of the
sentence (the truth value of ‘B’ and the truth table for ‘—’). But
since
truth value in a given valuation—hence, replacing ‘--4’ by ‘4’
cannot change the truth value of the overall sentence. The same
of course is true for any other sentence equivalent to ‘-—4’, say,
‘AN (AV A).

To state the result in general, let’s use the notation & (%) to
mean a sentence which contains the sentence & as a part. Then
by R(Q) we mean the result of replacing the occurrence of %
by the sentence Q. For instance, if & is the sentence letter ‘4’,
@ is the sentence ‘=—A4’, and R(P) is ‘A — B’, then R(Q) is
‘==4 - B’.

-—A4’ and ‘A’ are equivalent, they always have the same

If 2 and @ are equivalent, then so are R(%) and R(Q).

It follows from this fact that any sentence of the form
R(P) & R(Q), where &P and Q are equivalent, is a tautology.
However, the proofs in natural deduction will be wildly different
for different R. (As an exercise, give proofs that show that

F(-=P — Q) < (P — Q) and
I—(—|—|P/\Q)<—>(P/\Q)

and compare the two.)

Here is another fact: if two sentences & and @ are equivalent,
and you replace some sentence letter in both & and Q by the
same sentence R, the results are also equivalent. For instance, if
you replace ‘4’ in both ‘4 A B’ and ‘B A 4’ by, say, ‘~(C’, you get
‘2C A B’ and ‘B A =(C’, and those are equivalent. We can record
this, too:
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Equivalence is preserved under replacement of sentence
letters, i.e., if 9(4) and Q(A4) both contain the sentence
letter ‘4’ and are equivalent, then the sentences % (%) and
Q(R) (resulting by replacing ‘4’ by R in both) are also
equivalent.

This means that once we have shown that two sentence are
equivalent (e.g., ‘-4’ and ‘4’, or ‘A A B’ and ‘B A A’) we know
that all their common “instances” are also equivalent. Note that
we do not immediately get this from a truth table or a natural
deduction proof. E.g., a truth table that shows that ‘-—4’ and ‘4’
are equivalent does not also show that ‘-—(B — ()’ and ‘B — (’
are equivalent: the former needs just 2 lines, the latter 4.

47.2 Chains of equivalences

When you want to verify that two sentences are equivalent, you
can of course do a truth table, or look for a formal proof. But
there is a simpler method, based on the principle of substitutabil-
ity of equivalents we just discussed: Armed with a small catalog of
simple equivalences, replace parts of your first sentence by equiv-
alent parts, and repeat until you reach your second sentence.

This method of showing sentences equivalent is underwritten
by the two facts from the previous section. The first fact tells us
that if; say, =% and & are equivalent (for any sentence &), then
replacing ——=% in a sentence by & results in an equivalent sen-
tence. The second fact tells us that =—% and & are always equiv-
alent, for any sentence %. (A simple truth table shows that ‘~-4’
and ‘4’ are equivalent.) By the second fact we know that when-
ever we replace ‘4’ in both ‘--4’ and ‘4’ by some sentence &, we
get equivalent results. In other words, from the fact that ‘=—4’
and ‘4’ are equivalent and the second fact, we can conclude that,
for any sentence &, =% and P are equivalent.
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Let’s give an example. By De Morgan’s Laws, the following
pairs of sentences are equivalent:

-(AANB) & (mAV -B)
-(AV B) & (=A A -B)

This can be verified by constructing two truth tables, or four
natural deduction proofs that show:

—~(AAB)+ (=AV -B)
(=AV =B) + =(4 A B)

~(AV B) + (=A A=B)
(mAAN=-B)+—=(AV B)

By the second fact, any pairs of sentences of the following
forms are equivalent:

(P AQ) o (=P V-Q)
-(PVQ)o (=P A-Q)

Now consider the sentence ‘=(R V (§ A T))’. We will find an
equivalent sentence in which all ‘=’ signs attach directly to sen-
tence letters. In the first step, we consider this as a sentence
of the form —(% VvV Q)—then &P is the sentence ‘R’ and Q is
‘(S AT). Since =(P V Q) is equivalent to (=P A =Q) (by the
second of De Morgan’s Laws) we can replace the entire sentence
by (=% A =Q). In this case (where P is ‘R’ and Q is ‘(S A T)’)
we obtain ‘(=R A =(S A T))’. This new sentence contains as a
part the sentence ‘=(S A T°)’. It is of the form —(% A Q), except
now & is the sentence letter ‘S’ and Q is ‘7. By De Morgan’s
Law (the first one this time), this is equivalent to (=% VvV -Q),
or in this specific case, to ‘(-8 V =7)’. So we can replace the
part ‘=(S A T)’ by ‘(=S vV —T)’. This now results in the sentence
‘(=R A (=8 v =T))’, in which the ‘=’ symbols all attach directly
to sentence letters. We’ve “pushed” the negations inwards as far
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as possible. We can record such a chain of equivalences by list-
ing the individual steps, and recording, just as we do in natural
deduction, which basic equivalence we use in each case:

(VAT

~(R]AH(SAT)) DeM
(=(R A [=(S]A[T)
(=(RA[(H[S]vHT)

We’ve highlighted the sentence replaced, and those matching the
% and Q in De Morgan’s Laws for clarity, but this is not necessary,
and we won’t keep doing it.

In table 47.1 we’ve given a list of basic equivalences you can
use for such chains of equivalences. The labels abbreviate the
customary name for the respective logical laws: double negation
(DN), De Morgan (DeM), commutativity (Comm), distributivity
(Dist), associativity (Assoc), idempotence (Id), and absorption

(Abs).

g

DeM

~

47.3 Finding equivalent normal forms

In chapter 45 we showed that every sentence of TFL is equiv-
alent to one in disjunctive normal form (DNF) and to one in
conjunctive normal form (CNF). We did this by giving a method
to construct a sentences in DNF or CNF equivalent to the origi-
nal sentence by first constructing a truth table, and then “reading
off” a sentence in DNF or CNF from the truth table. This method
has two drawbacks. The first one is that the resulting sentences in
DNF or CNF are not always the shortest ones. The second one is
that the method itself becomes hard to apply when the sentence
you start with contains more than a handful of sentence letters
(since the truth table for a sentence with n sentence letters has
2" lines).
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—P &P (DN)

(P — Q) & (=P VQ) (Cond)
~(P - Q) & (P A-Q)

(Peo)es (P> A@Q—DP) (Bicond)

~(PAQ) & (=P V -Q) (DeM)
-(PVAQ)o (=P A-Q)

(PVvQ)e (VP (Comm)
(PAQ) o (QADP)

(PAQVR) e ((PAQV(PAR)) (Dist)
(PVQAR)© ((PVAOA(PVR))
(PV@QVR) e (PVQ)VR) (Assoc)

(PAGCAR) S ((PAQ)AR)

(PVP) P (Id)
(PAP) P
(PA(PVQR) P (Abs)

(PV(PAQ) &P

(PA(@QV-Q) &P (Simp)
(PVQA-Q) &P

(PVv(@QVv-Q) e (@QVv-Q)
(PAQA-Q)) ©(QA-Q)

Table 47.1: Basic equivalences
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We can use chains of equivalences as an alternative method:
To find a sentence in DNF, we can successively apply basic equiv-
alences until we have found an equivalent sentence that is in DNF.
Recall the conditions a sentence in DNF must satisfy:

(DNF1) No connectives occur in the sentence other than negations,
conjunctions and disjunctions;

(DNF2) Every occurrence of negation has minimal scope (i.e., any
‘=’ is immediately followed by an atomic sentence);

(DNF3) No disjunction occurs within the scope of any conjunction.

Condition (DNF1) says that we must remove all ‘=’ and ‘<>’ sym-
bols from a sentence. This is what the basic equivalences (Cond)
and (Bicond) are good for. For instance, suppose we start with
the sentence

-(AA=C)A (=4 — -B).

We can get rid of the ‘=’ by using (Cond). In this case &P is ‘-4’
and Q is ‘-B’. We get:

-(AA=C)A(==AV —B) Cond

The double negation can be removed, since ‘=—A4’ is equivalent
to ‘4’

-(AA=C)A(AV —B) DN

Now condition (DNF1) is satisfied: our sentence contains only ‘-’,
‘A’, and ‘V’. Condition (DNF2) says that we must find a way to
have all ‘=’s apply immediately to sentence letters. But in the
first conjunct it doesn’t. To ensure (DNF2) is satisfied, we use De
Morgan’s Laws and the double negation (DN) law as many times
as needed.

(=4AV —=C) A (AV =B) DeM
(=AV C)A(AV -B) DN
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The resulting sentence is now in CNF—it is a conjunction of dis-
junctions of sentence letters and negated sentence letters. But
we want a sentence in DNF, i.e., a sentence in which (DNF3) is
satisfied: no ‘v’ occurs in the scope of an ‘A’. We use the distribu-
tive laws (Dist) to ensure this. The last sentence is of the form
PAQVR), where P is (m4V C),Qis ‘A, and R is ‘-B’. By
applying (Dist) once we get:

(mAVC)ANA)V ((mAV C)A-B) Dist

This looks worse, but if we keep going, it’s going to look better!
The two disjuncts almost look like we can apply (Dist) again,
except the ‘v’ is on the wrong side. This is what commutativity
(Comm) is good for. let’s apply it to ‘(=4 Vv C) A A:

(AN (=AV C))V ((nAV C) A=B) Comm
We can apply (Dist) again to the resulting part, ‘4 A (m4V C)”:
(AAN=A)VAANC)V ((mAV C)A=B) Dist

Now in the left half, no ‘v’ is in the scope of an ‘A’. Let’s apply
the same principles to the right half:

(AAN=AVAANC)V(=BA(=AV()) Comm
(AAN=A)VAANC)V((=BA=A)V (=BAC)) Dist

Our sentence is now in DNF! But we can simplify it a bit:
‘(A A ~A)’ is a contradiction in TFL, i.e., it is always false. And
if you combine something that’s always false using ‘v’ with a sen-
tence &, you get something equivalent to just &. This is the
second of the simplification (Simp) rules.

(AANC)V((AAN=A)V ((~BA=A)V (-BAC)) Comm
(ANC)V ((=BA=A)V (=B ACQ)) Simp
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The final result is still in DNF, but a bit simpler still. It is also
much simpler than the DNF we would have obtained by the
method of chapter 45. In fact, the sentence we started with could
have been the § of section 45.2—it has exactly the truth table
used as an example there. The DNF we found there (on p. 371),
was (with all necessary brackets):

((((AABYAC)V((AN=B)AC)V((mAA-B)AC))V((mAAN-B)A=C)

Practice exercises

A. Consider the following sentences:

(A — —|B)

-(4A < B)

(=4 vV —|(A A B))

(=(4A—> B)A(4A— Q)

(—|(A \Y B) L ((—|C A —|A) — —|B))
((=(AA=-B) = C) A=(AAD))

Sk ®

For each sentence, find an equivalent sentence in DNF and one
in CNF by giving a chain of equivalences. Use (Id), (Abs), and
(Simp) to simplify your sentences as much as possible.



CHAPTER 48

Soundness

In this chapter we relate TFL’s semantics to its natural deduction
proof system (as defined in part IV). We will prove that the formal
proof system is safe: you can only prove sentences from premises
from which they actually follow. Intuitively, a formal proof system
is sound iff it does not allow you to prove any invalid arguments.
This is obviously a highly desirable property. It tells us that our
proof system will never lead us astray. Indeed, if our proof system
were not sound, then we would not be able to trust our proofs.
The aim of this chapter is to prove that our proof system is sound.

Let’s make the idea more precise. We’ll abbreviate a list of
sentences using the Greek letter I' (‘gamma’). A formal proof sys-
tem is SOUND (relative to a given semantics) iff, whenever there
is a formal proof of 6 from assumptions among I', then I" gen-
uinely entails ‘€ (given that semantics). Otherwise put, to prove
that TFL’s proof system is sound, we need to prove the following

Soundness Theorem. For any sentences I" and 6: if I' -
6, then I 6

To prove this, we will check each of the rules of TFL’s proof
system individually. We want to show that no application of those
rules ever leads us astray. Since a proof just involves repeated

390
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application of those rules, this will show that no proof ever leads
us astray. Or at least, that is the general idea.

To begin with, we must make the idea of ‘leading us astray’
more precise. Say that a line of a proof is sHINY iff the assump-
tions on which that line depends entail the sentence on that line."
To illustrate the idea, consider the following:

1| F—->(GAH) PR

2 F AS

3 GANH —E 1,2
4 G AE, 3

5 | F-G -1, 2-4

Line 1 is shiny iff ¥ - (GAH) ¢ F — (G A H). You should
be easily convinced that line 1 is, indeed, shiny! Similarly, line 4
is shiny iff F — (G A H),F £ G. Again, it is easy to check that
line 4 is shiny. As is every line in this TFL-proof. We want to
show that this is no coincidence. That is, we want to prove:

l Shininess Lemma. Every line of every TFL-proof is shiny.

Then we will know that we have never gone astray, on any line
of a proof. Indeed, given the Shininess Lemma, it will be easy to
prove the Soundness Theorem:

Proof: Suppose I' + €. Then there is a TFL-proof, with €
appearing on its last line, whose only undischarged assumptions
are among I". The Shininess Lemma tells us that every line on
every TFL-proof is shiny. So this last line is shiny, i.e.,, I' £ 6.
QED

It remains to prove the Shininess Lemma.

To do this, we observe that every line of any TFL-proof is
either a premise or an assumption, or it is obtained by applying

*The word ‘shiny’ is not standard among logicians.
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some rule. Premises are automatically shiny: if o is a premise,
then it is among the sentences in I', and I' £ o trivially. Assump-
tions are also shiny, since the any assumption 9 depends on itself,
and 4 £ dl. So what we want to show is that no application of a
rule of TFL’s proof system will lead us astray. More precisely, say
that a rule of inference is RULE-SOUND iff for all TFL-proofs, if
we obtain a line on a TFL-proof by applying that rule, and every
earlier line in the TFL-proof is shiny, then our new line is also
shiny. What we need to show is that every rule in TFL’s proof
system is rule-sound.

We will do this below. But having demonstrated the rule-
soundness of every rule, the Shininess Lemma will follow imme-
diately:

Proof- Start with line 1 of any TFL proof. It must be either a
premise or an assumption, and those are all shiny, as we’ve seen
above. Take the next line, 2. If it is a premise or assumption, it is
shiny. If not, it is obtained from line 1 using an inference which
is rule-sound. Since line 1 is shiny, line 2 is also shiny. Take the
next line, 3. If it is a premise or assumption, it is shiny. If not, it
is obtained from a previous line using an inference which is rule-
sound, and we’ve established that all previous lines are shiny.
Thus, line 3 is also shiny. And so on. In general, the sentence
written on line » must either be a premise or assumption (which
is shiny) or be obtained using a formal inference rule which is
rule-sound. Since every earlier line is shiny, line #z itself is shiny.
We can simply go through this reasoning, for any TFL proof,
starting with line 1 and continuing to the last line, and get that
every line of every TFL-proof is shiny. QED

It remains to show that every rule is rule-sound. This is not
difficult, but it is time-consuming, since we need to check each
rule individually, and TFL’s proof system has plenty of rules!
To speed up the process marginally, we will introduce a conve-
nient abbreviation: ‘A;’ (‘delta’) will abbreviate the assumptions
(if any) on which line i depends in our TFL-proof (context will
indicate which TFL-proof we have in mind). This includes all
premises of our proof, and all assumptions of subproofs which
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are still open at line i. Let’s first record our observation about
premises and assumptions from above.

Premises and assumptions in TFL proofs are shiny.

If o is a premise on line z, then it is among A, as that includes
all premises of the proof. If it is introduced as an assumption of
a subproof on line z, then everything in the subproof (including
line n, i.e., o itself) depends on o, and so & is among A,. In
either case, A, E d.

Now let’s proceed to show that all the inference rules are rule-
sound.

Al is rule-sound. ]

Proof. Consider any application of Al in any TFL-proof, i.e.,
something like:

i | oA
J | B
n | AANB AL, j

To show that Al is rule-sound, we assume that every line before
line 7 is shiny; and we aim to show that line # is shiny, i.e., that
ApEdNRB.

So, let v be any valuation that makes all of A, true.

We first show that » makes o true. To prove this, note that
all of A; are among A,. By hypothesis, line i is shiny. So any
valuation that makes all of A; true makes o true. Since v makes
all of A; true, it makes of true too.

We can similarly see that » makes % true.

So v makes ¢ true and v makes 9B true. Consequently, v
makes o A % true. So any valuation that makes all sentences
among A, true also makes o/ A 9B true. That is: line z is shiny.

QED
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All of the remaining lemmas establishing rule-soundness will
have, essentially, the same structure as this one did.

l AE is rule-sound.

Proof- Assume that every line before line # on some TFL-proof
is shiny, and that AE is used on line z. So the situation is:

i | AANDB
n | A AE, i

(or perhaps with 9 on line z instead; but similar reasoning will
apply in that case). Let v be any valuation that makes all of A,
true. Note that all of A; are among A,. By hypothesis, line i is
shiny. So any valuation that makes all of A; true makes d A &
true. So » makes o AR true, and hence makes o true. So A, E o.

QED

VI is rule-sound.

We leave this as an exercise.

VE is rule-sound.

Proof- Assume that every line before line z on some TFL-proof
is shiny, and that AE is used on line z. So the situation is:

m |AVAB

i d AS

il ]e

k B AS

L e

n | 6 VE, m, i—j, k-l
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Let v be any valuation that makes all of A, true. Note that all of
Ay, are among A,. By hypothesis, line m is shiny. So any valuation
that makes A, true makes o vV % true. So in particular, » makes
AV PR true, and hence either » makes o true, or v makes % true.
We now reason through these two cases:

1. v makes A true. All of A; are among A,, with the possible
exception of . Since » makes all of A, true, and also makes
d true, v makes all of A; true. Now, by assumption, line
J is shiny; so A; E 6. But the sentences A; are just the
sentences Aj, so A; F 6. So, any valuation that makes all
of A; true makes € true. But v is just such a valuation. So
v makes G true.

2. v makes B true. Reasoning in exactly the same way, consid-
ering lines £ and /, v makes 6 true.

Either way, » makes € true. So A, £ 6. QED

=E is rule-sound.

Proof Assume that every line before line # on some TFL-proof
is shiny, and that —E is used on line z. So the situation is:

i | A
J |
n| L -E, i, j

Note that all of A; and all of A; are among A,. By hypothesis,
lines i and j are shiny. So any valuation which makes all of A,
true would have to make both o/ and —d true. But no valuation
can do that. So no valuation makes all of A, true. So A, £ L,
vacuously. QED

X is rule-sound. ]
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We leave this as an exercise.

=] is rule-sound.

Proof- Assume that every line before line z on some TFL-proof
is shiny, and that —I is used on line n. So the situation is:

i d AS
J L
n | ~d -l i—j

Let v be any valuation that makes all of A, true. Note that all
of A, are among A;, with the possible exception of d itself. By
hypothesis, line j is shiny. But no valuation can make ‘L’ true,
so no valuation can make all of A; true. Since the sentences A;
are just the sentences A;, no valuation can make all of A; true.
Since v makes all of A, true, it must therefore make o false, and
so make —dl true. So A, £ =dl. QED

IP, —»I, —»E, <I, and <E are all rule-sound. ]

We leave these as exercises.
This establishes that all the basic rules of our proof system
are rule-sound. Finally, we show:

All of the derived rules of our proof system are rule-sound.

Proof- Suppose that we used a derived rule to obtain some
sentence, 9, on line z of some TFL-proof, and that every earlier
line is shiny. Every use of a derived rule can be replaced (at the
cost of long-windedness) with multiple uses of basic rules. That
is to say, we could have used basic rules to write 9 on some line
n + k, without introducing any further assumptions. So, applying
our individual results that all basic rules are rule-sound several
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times (k£ + 1 times, in fact), we can see that line n + £ is shiny.
Hence the derived rule is rule-sound. QED

And that’s that! We have shown that every rule—basic or
otherwise—is rule-sound, which is all that we required to establish
the Shininess Lemma, and hence the Soundness Theorem.

But it might help to round off this chapter if we repeat my
informal explanation of what we have done. A formal proof is
just a sequence—of arbitrary length—of applications of rules. We
have shown that any application of any rule will not lead you
astray. It follows that no formal proof will lead you astray. That
is: our proof system is sound.

Practice exercises

A. Complete the Lemmas left as exercises in this chapter. That
is, show that the following are rule-sound:

V1. (Hint: this is similar to the case of AE.)
X. (Hint: this is similar to the case of —E.)

—1. (Hint: this is similar to VE.)

—E.

IP. (Hint: this is similar to the case of —1.)

U2 b
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Symbolic

notation

A.1 Alternative nomenclature

Truth-functional logic. TFL goes by other names. Sometimes
it is called sentential logic, because it deals fundamentally with
sentences. Sometimes it is called propositional logic, on the idea
that it deals fundamentally with propositions. We have stuck with
truth-functional logic, to emphasize the fact that it deals only with
assignments of truth and falsity to sentences, and that its connec-
tives are all truth-functional.

First-order logic. FOL goes by other names. Sometimes it is
called predicate logic, because it allows us to apply predicates to
objects. Sometimes it is called guantified logic, because it makes
use of quantifiers.

Formulas. Some texts call formulas well-formed formulas. Since
‘well-formed formula’ is such a long and cumbersome phrase,
they then abbreviate this as wff. This is both barbarous and un-
necessary (such texts do not countenance ‘ill-formed formulas’).
We have stuck with ‘formula’.

399



APPENDIX A. SYMBOLIC NOTATION 400

In chapter 6, we defined sentences of TFL. These are also some-
times called ‘formulas’ (or ‘well-formed formulas’) since in TFL,
unlike FOL, there is no distinction between a formula and a sen-
tence.

Valuations. Some texts call valuations truth-assignments, or
truth-value assignments.

n-Place predicates. We have chosen to call predicates ‘one-
place’, ‘two-place’, ‘three-place’, etc. Other texts respectively call
them ‘monadic’, ‘dyadic’, ‘triadic’, etc. Still other texts call them
‘unary’, ‘binary’, ‘ternary’, etc.

Names. InFOL, we have used ‘a’, ‘0’, ‘¢’, for names. Some texts
call these ‘constants’. Other texts do not mark any difference
between names and variables in the syntax. Those texts focus
simply on whether the symbol occurs bound or unbound.

Domains. Some texts describe a domain as a ‘domain of dis-
course’, or a ‘universe of discourse’.

A.2 Alternative symbols

In the history of formal logic, different symbols have been used
at different times and by different authors. Often, authors were
forced to use notation that their printers could typeset. This ap-
pendix presents some common symbols, so that you can recog-
nize them if you encounter them in an article or in another book.

Negation. Two commonly used symbols are the hoe, ‘—’, and
the swung dash or tilde, ‘~’ In some more advanced formal sys-
tems it is necessary to distinguish between two kinds of nega-
tion; the distinction is sometimes represented by using both ‘=’
and ‘~’. Older texts sometimes indicate negation by a line over
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the formula being negated, e.g., ‘4 A B’, or by a minus sign ‘-’.
Many texts use ‘x # y’ to abbreviate ‘—x = y’.

Disjunction. The symbol ‘v’ is typically used to symbolize in-
clusive disjunction. In some texts in the so-called algebraic tradi-
tion, disjunction is written as addition ‘+’. In many programming
languages, a vertical bar ‘|’ (or two: ‘| |”) are used. (This lends
itself to confusion with the Sheffer stroke of chapter 46, which is
standardly written as |’.)

Conjunction. Conjunction is often symbolized with the amper-
sand, ‘&’. The ampersand is a decorative form of the Latin word
‘et’, which means ‘and’. (Its etymology still lingers in certain
fonts, particularly in italic fonts; thus an italic ampersand might
appear as ‘@ ’.) This symbol is commonly used in natural En-
glish writing (e.g. ‘Smith & Sons’), and so even though it is a
natural choice, many logicians use a different symbol to avoid
confusion between the object and metalanguage: as a symbol in
a formal system, the ampersand is not the English word ‘&’. The
most common choice now is ‘A’, which is a counterpart to the
symbol used for disjunction. Sometimes a single dot, *~’, is used.
In some older texts, there is no symbol for conjunction at all; ‘4
and B’ is simply written ‘AB’.

Material conditional. There are two common symbols for the
material conditional: the arrow, ‘—’, and the horseshoe, ‘O’.

Material biconditional. The double-headed arrow, ‘<>’ is used
in systems that use the arrow to represent the material condi-
tional. Systems that use the horseshoe for the conditional typi-

-

cally use the triple bar, ‘=, for the biconditional.

Quantifiers. The universal quantifier is typically symbolized
as a rotated ‘A’, and the existential quantifier as a rotated ‘E’. In
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some texts, there is no separate symbol for the universal quanti-
fier. Instead, the variable is just written in parentheses in front of
the formula that it binds. For example, they might write ‘(x)P(x)’
where we would write ‘Vx P(x)’. Some texts also use large ver-
sions of our conjunction and disjunction connectives, i.e., ‘/\” and
‘\/’, for the universal and existential quantifier, respectively. (The
variable is sometimes set as a subscript to these symbols, or even
underneath them.)

These alternative typographies are summarised below:

negation -, ~, —, A
conjunction A, &,
disjunction Vv, +, |, ||
conditional —, >
biconditional &, =
universal quantifier Vx, (x), A,
existential quantifier 3x, \/,

A.3 Polish notation

This section briefly discusses sentential logic in Polish notation,
a system of notation introduced in the late 1920s by the Polish
logician Jan Lukasiewicz.

Lower case letters are used as sentence letters. The capital
letter N is used for negation. 4 is used for disjunction, K for
conjunction, C for the conditional, E for the biconditional. (‘4’ is
for alternation, another name for logical disjunction. ‘E’ is for
equivalence.)

In Polish notation, a binary connective is written before the
two sentences that it connects. For example, the sentence 4 A B
of TFL would be written Kab in Polish notation.

The sentences -4 — B and —(4 — B) are very different;
the main logical operator of the first is the conditional, but the
main connective of the second is negation. In TFL, we show this
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by putting parentheses around the conditional in the second sen-
tence. In Polish notation, parentheses are never required. The
left-most connective is always the main connective. The first sen-
tence would simply be written CNab and the second N Cab.

This feature of Polish notation means that it is possible to
evaluate sentences simply by working through the symbols from
right to left. If you were constructing a truth table for NKab,
for example, you would first consider the truth-values assigned
to b and a, then consider their conjunction, and then negate the
result. The general rule for what to evaluate next in TFL is not
nearly so simple. In TFL, the truth table for —=(4 A B) requires
looking at 4 and B, then looking in the middle of the sentence at
the conjunction, and then at the beginning of the sentence at the
negation. Because the order of operations can be specified more
mechanically in Polish notation, variants of Polish notation are
used as the internal structure for many computer programming
languages.
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Alternative
proof systems

In formulating our natural deduction system, we treated certain
rules of natural deduction as basic, and others as derived. How-
ever, we could equally well have taken various different rules as
basic or derived. We will illustrate this point by considering some
alternative treatments of disjunction, negation, and the quanti-
fiers. We will also explain why we have made the choices that we
have.

B.1 Alternative disjunction elimination

Some systems take DS as their basic rule for disjunction elimina-
tion. Such systems can then treat the VE rule as a derived rule.
For they might offer the following proof scheme:

404
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n
n+1
n+2
n+3
n+4
n+b
n+6
n+7
n+8
n+9

n+ 10

=S
<
S

6@‘@ e

A— 6
B — 6
-6

=S

1

6

AS

AS

-1, i—j

-1, k-l

AS

AS

—E, n+3,n
-E,n+2, n+4
-Ln+3n+5
DS, m,n+6
—E, n+7,n+1
-E,n+2,n+8

IP, n+2-n+9

405

So why did we choose to take VE as basic, rather than DS?* Our
reasoning is that DS involves the use of ‘=’ in the statement of the
rule. It is in some sense ‘cleaner’ for our disjunction elimination
rule to avoid mentioning other connectives.

'P. D. Magnus’s original version of this book went the other way.
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B.2 Alternative negation rules

Some systems take the following rule as their basic negation in-
troduction rule:

m d AS
n—1 B
n -ARB
- -I*, m—n

and a corresponding version of the rule we called IP as their basic
negation elimination rule:

m -4 AS
n—1 RB
n -ARB
A -E* m-n

Using these two rules, we could we could have avoided all use of
the symbol ‘L’ altogether.” The resulting system would have had
fewer rules than ours.

Another way to deal with negation is to use either LEM or
DNE as a basic rule and introduce IP as a derived rule. Typically,
in such a system the rules are given different names, too. E.g.,
sometimes what we call —E is called LI, and what we call X is
called LE.3

So why did we chose our rules for negation and contradiction?

Our first reason is that adding the symbol ‘L’ to our natural
deduction system makes proofs considerably easier to work with.
For instance, in our system it’s always clear what the conclusion

2Again, P. D. Magnus’s original version of this book went the other way.
3The version of this book due to Tim Button goes this route and replaces
IP with LEM, which he calls TND, for “tertium non datur.”
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of a subproof is: the sentence on the last line, e.g., L in IP or
=I. In —I* and —E*, subproofs have two conclusions, so you can’t
check at one glance if an application of them is correct.

Our second reason is that a lot of fascinating philosophical
discussion has focussed on the acceptability or otherwise of indi-
rect proof IP (equivalently, excluded middle, i.e., LEM, or double
negation elimination DNE) and explosion (i.e., X). By treating
these as separate rules in the proof system, you will be in a better
position to engage with that philosophical discussion. In particu-
lar: having invoked these rules explicitly, it would be much easier
for us to know what a system which lacked these rules would look
like.

This discussion, and in fact the vast majority of mathematical
study on applications of natural deduction proofs beyond intro-
ductory courses, makes reference to a different version of natural
deduction. This version was invented by Gerhard Gentzen in
1935 as refined by Dag Prawitz in 1965. Our set of basic rules
coincides with theirs. In other words, the rules we use are those
that are standard in philosophical and mathematical discussion
of natural deduction proofs outside of introductory courses.

B.3 Alternative quantification rules

An alternative approach to the quantifiers is to take as basic the
rules for VI and VE from chapter 36, and also two CQ rules which
allow us to move from Vo =g to =3 o and vice versa.*

Taking only these rules as basic, we could have derived the
3I and 3E rules provided in chapter 36. To derive the 3I rule is
fairly simple. Suppose ¢ contains the name <, and contains no
instances of the variable «, and that we want to do the following:

4Warren Goldfarb follows this line in Deductive Logic, 2003, Hackett Pub-
lishing Co.



APPENDIX B. ALTERNATIVE PROOF SYSTEMS 408

m |A(...c...c...)
k| dxed(...x...c...)

This is not yet permitted, since in this new system, we do not
have the 3I rule. We can, however, offer the following:

m A(...c...c...)
m+1 —JxA(...x...c...) AS

m+2 Ve-d(...c...c...) CQ,m+1

m+ 3 -A(...c...c...) VE, m + 2
m+ 4 L —-E, m+ 3, m
m+5 | xed(...xc...c...) IP, m + 1-m + 4

To derive the 3E rule is rather more subtle. This is because the
3E rule has an important constraint (as, indeed, does the VI rule),
and we need to make sure that we are respecting it. So, suppose
we are in a situation where we want to do the following:

i |.§ﬁ(...c...c...) AS
il |
k| B

where ¢ does not occur in any undischarged assumptions, or in
B, orin e A(...«...a...). Ordinarily, we would be allowed
to use the 3E rule; but we are not here assuming that we have
access to this rule as a basic rule. Nevertheless, we could offer
the following, more complicated derivation:
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m Ard(...x...x...)

i A(...c...c...) AS

J B

k A(...c...c...) > B —I, i—j
k+1 - AS

k+2 -d(...c...c...) MT, k, k+1

k+3 Ve-dA(...x...c...) VL Ek+2
k+4 —Jxd(...x...x...) CQ,k+3

k+5 L -E, k+4,m
k+6 | A IP, k+1-k+5

We are permitted to use VI on line £ + 3 because ¢ does not occur
in any undischarged assumptions or in 9. The entries on lines
k + 4 and £ + 1 contradict each other, because < does not occur
inJed(...xc...xc...).

Armed with these derived rules, we could now go on to derive
the two remaining CQ rules, exactly as in chapter 4o0.

So, why did we start with all of the quantifier rules as basic,
and then derive the CQ rules?

Our first reason is that it seems more intuitive to treat the
quantifiers as on a par with one another, giving them their own
basic rules for introduction and elimination.

Our second reason relates to the discussion of alternative
negation rules. In the derivations of the rules of 3I and 3JE that
we have offered in this section, we invoked IP. But, as we men-
tioned earlier, IP is a contentious rule. So, if we want to move
to a system which abandons IP, but which still allows us to use
existential quantifiers, we will want to take the introduction and
elimination rules for the quantifiers as basic, and take the CQ
rules as derived. (Indeed, in a system without IP, LEM, and
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DNE, we will be unable to derive the CQ rule which moves from
Vo d to o —A.)



APPENDIX C

Quick
reference

C.1 Characteristic truth tables

s | -o d B|l|ANB | AVB | d>RB|doB

T| F T T| T T T T

F| T T F| F T F F
F T| F T T F
F F| F F T T
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C.2 Symbolization

SENTENTIAL CONNECTIVES

It is not the case that P
Either P or Q

Neither P nor Q

Both P and Q

If P then Q

P only if Q

P if and only if Q

P unless Q

All F's are Gs
Some F's are Gs
Not all F's are Gs

No F's are Gs

Only Fs are Gs

Only ¢ is G
Everything other
than ¢ is G
Everything
except ¢ is G
The F is G

It is not the case
that the F is G
The F is non-G

-P

(PVQ)

—|(P \Y% Q) or (—|P A —|Q)
(PAQ)

(P —0)

(P — Q)

(P e Q)

(-Q - P)or (PVQ)

PREDICATES

Vx(F(x) = G(x))
Ax(F(x) A G(x))
-Vx(F(x) — G(x)) or
Ax(F(x) A =G (x))
Vx(F(x) —» =G(x)) or
=3x(F(x) A G(x))
Vx(G(x) — F(x))
=3x(=F(x) A G(x))

IDENTITY
Vx(G(x) < x =¢)
Vx(=x =¢— G(x))

Va(=x =¢ e G(x))
Ax(F(x) AVy(F(y) = x =9) A G(x))

~3x(F(x) AVy(F(3) = x = 9) A G(x))
3x(F(x) AYp(F(9) = x = 3) A-G(x))
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C.3 Using identity to symbolize quantities
There are at least Fs.

one 3dxF(x)
two  Fx13xg(F(x1) A F(x9) A —x1 = x9)
three Jx13xeTxg(F(x1) A F(x9) A F(x3) A
X1 = X9 A X1 = X3 A X9 = JC3)
four Fx1IxgTxgTxs(F(x1) A F(x9) A F(x3) A F(x4) A
—X1 = X9 A X1 = X3 A X1 = X4 A
X9 = X3 A\ X9 = X4 N\ X3 = x4)
n Fxp...3x,(F(x1) A...AF(x,) A
—|x1=x2/\.../\—|x,,_1=xn)

There are at most Fs.

One way to say ‘there are at most n Fs’ is to put a negation sign
in front of the symbolization for ‘there are at least n + 1 Fs’.
Equivalently, we can offer:
one VYx1Vxy [(F(xl) A F(x9)) = x1 = xg]
two  VYx1VaoVaxs [(F(xl) A F(x9) A F(x3)) —
(x1 =x9 V1 :x3Vx2=x3)]
three Vx1VaoVagVay [(F(xl) A F(x9) AN F(x3) A F(x4)) —
(x1=x3 VX1 =x3Vxy=x4V
X9 = x3 V X9 :x4\/x3:x4)]
n Vxi.. .Vx,,+1[(F(x1) Ao ANF(xp41)) —
(x1 =2V ...Vax, :x,,+1)]

There are exactly Fs.

One way to say ‘there are exactly n F's’ is to conjoin two of the
symbolizations above and say ‘there are at least » F's and there
are at most n F's.” The following equivalent formulas are shorter:
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Z€ero
one
two

three

Vx —F(x)
Fx[F(x) AVY(F(p) = x = y)]
ElxlEng[F(xl) /\F(xg) A
—x1 =% AVY(F()) = (9 =21V y = x9))]
Jx13x9Tx3 [F(xl) A F(xg) A F(xg) A
—X1 = X9 A X1 = X3 A X9 = X3 A
Vy(F(y) > 0 =m Vy=1x2Vy=x3))]
Elxl...Elxn[F(xl)/\.../\F(xn)/\
X1 =X A .. AN X1 =X, A
Vy(F(y)—>(y:x1\/...Vy=x,,))]
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C.4 Basic deduction rules for TFL

Reiteration
m | d
d Rym
Conjunction
m | A
n | B
ANB
m | ANB
d
m | ANB
B
Conditional
m ol
n R
ad— %R
m|dA— B
n | d
B

AL m, n

AE, m

AS

-1, m—n

—E, m, n

Negation
m da AS
|

-9 =1, m—n
m | ~d
n | A4

€L -E, m, n

Indirect proof

i - AS
J L

o IP, i—j
Explosion
m | L
d X, m
Disjunction
m | A
AVAB VL m
m | A
Bvd VL,m

415
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m | dvARB Biconditional
i o AS i oA AS
J B3 j E3
k B AS k B AS
C] e e
6 VE, m, i—j, k-1 A B ol i-j, k-
m|de R
n |4
B <E m, n
m|de R
n | B
/] <E, m, n

C.5 Derived rules for TFL

Disjunctive syllogism Modus Tollens
m | d— B
n | -%
m | VR -d MT, m, n
n | -d
1] DS, m, n
Double-negation
elimination
m | AVR
n | -9 m | -—d

dA DS, m, n A DNE, m
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Excluded middle De Morgan Rules
m | =(dV B)
A N =B DeM, m
m | A AR
i o AS -(AvARB) DeM,m
illa m | (sl A B)
k - AS AV -%B DeM, m
l % m | AV R
B LEM, i-j, k-I -(AANB) DeM, m
C.6 Basic deduction rules for FOL
Universal elimination Universal introduction
m|d(...c...c...)
m | Vosd(.m. @) Va:sﬂ(acoc) ‘V.’I,m
< must not occur in any undis-
A(...c...c...) VE, m charged assumption
Existential introduction Existential elimination
m|dA(..c...c...) m | Jed(...x...x...)
e A(...c...c...) d,m i |&<l(...c...0...) AS
/| [
B 3E, m, i—

< must not occur in any
undischarged assumption, in

e d(...x...x

...),orin %
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Identity introduction

c=< =]

Identity elimination

m|a=0 m|a==0
n |d(...a...a...) n |d(...6...6...)
A(...6...a...) =E,m,n A(...a...6...) =E,m,n

C.7 Derived rules for FOL

m | Voo m | Jx-dA

—Jaxed CQ,m -Ved  CQ, m
m | =Jacd m | ~Vad

Ve-dd  CQ, m Je-d CQ,m

C.8 Rules for the use of subproofs and
citations

To cite an individual line when applying a rule:

1. the line must come before the line where the rule is applied,
but

2. not occur within a subproof that has been closed before the
line where the rule is applied.

To cite a subproof when applying a rule:

1. the cited subproof must come entirely before the applica-
tion of the rule where it is cited,
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2. the cited subproof must not lie within some other closed
subproof which is closed at the line it is cited, and

3. the last line of the cited subproof must not occur inside a
nested subproof.

C.9 Rules for chains of equivalences

P o P (DN)

(P >Q)e (=PVAQ) (Cond)
(P - 0) o (PA-Q)

(PeoQ)e (P-0)AQ—>P) (Bicond)

(PAQ) o (=P V-Q) (DeM)
“(PVAQ)s (=P A-Q)

(PVER)e (VPR (Comm)
(PAQ) © (QAP)

(PAOVR))S (PAQ)V (P AR)) (Dist)
(PVQAR) S ((PVQ)A(PVR))
(PV@QVR) e (PVQR)VR) (Assoc)
(PAQAR) S (PAQ)AR)

(PVP) &P (Id)
(PADP) &P
(PA(PVQ) &P (Abs)

(PV(PAQ) &P

(PA@QV-Q) &P (Simp)
(PV(Q@QA-Q) P
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(PVv(@V-Q) e (@V-Q)
(PAQA-Q)) & (QA-Q)



Glossary

antecedent The sentence on the left side of a conditional.

anti-symmetry The property a relation R has iff for no two dif
ferent x and y, R(x,y) and R(y,x) both hold.

argument A connected series of sentences, divided into premises
and conclusion.

atomic sentence An expression used to represent a basic sen-
tence; a sentence letter in TFL, or a predicate symbol
followed by names in FOL.

biconditional The symbol <, used to represent words and
phrases that function like the English phrase “if and only
if”; or a sentence formed using this connective.

bound variable An occurrence of a variable in a formula which is
in the scope of a quantifier followed by the same variable.

complete truth table A table that gives all the possible truth
values for a sentence of TFL or sentences in TFL, with
a line for every possible valuation of all sentence letters.

completeness A property held by logical systems if and only if
E implies F.

conclusion The last sentence in an argument.

conclusion indicator A word or phrase such as “therefore” used
to indicate that what follows is the conclusion of an ar-
gument.

421
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conditional The symbol —, used to represent words and phrases
that function like the English phrase “if ... then...”; a
sentence formed by using this symbol.

conjunct A sentence joined to another by a conjunction.

conjunction The symbol A, used to represent words and phrases
that function like the English word “and”; or a sentence
formed using that symbol.

conjunctive normal form (DNF) A sentence which is a con-
junction of disjunctions of atomic sentences or negated
atomic sentences.

connective A logical operator in TFL used to combine sentence
letters into larger sentences.

consequent The sentence on the right side of a conditional.

consistency Sentences are jointly consistent iff the contradic-
tion L cannot be proved from them.

contingent sentence A sentence that is neither a necessary truth
nor a necessary falsehood; a sentence that in some case
is true and in some other case, false.

contradiction (of FOL) A sentence of FOL that is false in every
interpretation.

contradiction (of TFL) A sentence that has only Fs in the col-
umn under the main logical operator of its complete
truth table; a sentence that is false on every valuation.

disjunct A sentence joined to another by a disjunction.

disjunction The connective V, used to represent words and
phrases that function like the English word “or” in its
inclusive sense; or a sentence formed by using this con-
nective.

disjunctive normal form (DNF) A sentence which is a dis-
junction of conjunctions of atomic sentences or negated
atomic sentences.

domain The collection of objects assumed for a symbolization
in FOL, or that gives the range of the quantifiers in an
interpretation.
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empty predicate A predicate that applies to no object in the
domain.

equivalence (in FOL) A property held by pairs of sentences
of FOL if and only if the sentences have the same truth
value in every interpretation.

equivalence (in TFL) A property held by pairs of sentences if
and only if the complete truth table for those sentences
has identical columns under the two main logical oper-
ators, i.e., if the sentences have the same truth value on
every valuation.

existential quantifier The symbol 3 of FOL used to symbolize
existence; dx F(x) is true iff at least one member of the
domain is F.

formula An expression of FOL built according to the inductive
rules in section 27.2.

free variable An occurrence of a variable in a formula which is
not a bound variable.

functional completeness Property of a collection of connectives
which holds iff every possible truth table is the truth ta-
ble of a sentence involving only those connectives.

inconsistency Sentences are inconsistent iff the contradiction L
can be proved from them.

interderivability A property held by pairs of statements if and
only if there is a derivation which takes you from each
one to the other one.

interpretation A specification of a domain together with the ob-
jects the names pick out and which objects the predicates
are true of.

invalid A property of arguments that holds when the conclusion
is not a consequence of the premises; the opposite of
valid.

joint possibility A property possessed by some sentences when
they are all true in a single case.
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main logical operator The operator used last in the construc-
tion of a sentence of TFL or a formula of FOL.

metalanguage The language logicians use to talk about the ob-
ject language. In this textbook, the metalanguage is En-
glish, supplemented by certain symbols like metavari-
ables and technical terms like “valid”.

metavariables A variable in the metalanguage that can represent
any sentence in the object language.

name A symbol of FOL used to pick out an object of the domain.

necessary equivalence A property held by a pair of sentences
that, in every case, are either both true or both false.

necessary falsehood A sentence that is false in every case.

necessary truth A sentence that is true in every case.

negation The symbol -, used to represent words and phrases
that function like the English word “not”.

object language A language that is constructed and studied by
logicians. In this textbook, the object languages are TFL
and FOL.

predicate A symbol of FOL used to symbolize a property or
relation.

premise A sentence in an argument other than the conclusion.

premise indicator A word or phrase such as “because” used to
indicate that what follows is the premise of an argument.

reflexivity The property a relation R has iff for any x, R(x,x)
holds.

satisfaction of a formula The relation between an object d in
the domain of an interpretation I and a formula o (x)
which holds iff (<) is true in the modified interpreta-
tion I[d/<] in which ¢ names d.

satisfiability (in FOL) A property held by sentences of FOL if
and only if some interpretation makes all the sentences
true together.



GLOSSARY 425

satisfiability (in TFL) A property held by sentences of TFL if
and only if the complete truth table for all those sen-
tences together contains one line on which all the sen-
tences are true, i.e., if some valuation makes all the sen-
tences true.

scope The subformula of a sentence of TFL or a formula of FOL
for which the main logical operator is the operator.

sentence (of FOL) A formula of FOL which has no free vari-
ables.

sentence (of TFL) A string of symbols in TFL that can be built
up according to the inductive rules given on p. 51.

sentence letter An letter used to represent a basic sentence in
TFL.

sound A property of arguments that holds if the argument is
valid and has all true premises.

soundness A property held by logical systems if and only if +
implies .

substitution instance The result of replacing every free occur-
rence of a variable in a formula with a name.

symbolization key A list that shows which English sentences are
represented by which sentence letters in TFL.

symmetry The property a relation R has iff it is the case that
whenever R(x,y) holds, so does R(y,x).

tautology A sentence that has only Ts in the column under the
main logical operator of its complete truth table; a sen-
tence that is true on every valuation.

term Either a name or a variable.

theorem A sentence that can be proved without any premises.

transitivity The property a relation R has iff it is the case that
whenever R(x,y) and R(y,z) then also R(x,2).

truth value One of the two logical values sentences can have:
True and False.

truth-functional connective An operator that builds larger sen-
tences out of smaller ones and fixes the truth value of
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the resulting sentence based only on the truth value of
the component sentences.

universal quantifier The symbol V of FOL used to symbolize
generality; Vx F'(x) is true iff every member of the do-
main is F.

valid A property of arguments where there conclusion is a con-
sequence of the premises.

validity A sentence of FOL that is true in every interpretation.

validity of arguments (in FOL) A property held by arguments;
an argument is valid if and only if no interpretation
makes all premises true and the conclusion false.

validity of arguments (in TFL) A property held by arguments
if and only if the complete truth table for the argument
contains no rows where the premises are all true and the
conclusion false, i.e., if no valuation makes all premises
true and the conclusion false.

valuation An assignment of truth values to particular sentence
letters.

variable A symbol of FOL used following quantifiers and as
placeholders in atomic formulas; lowercase letters be-
tween s and z.



In the Introduction to his volume Symbolic
Logic, Charles Lutwidge Dodgson advised:
“When you come to any passage you don’t un-
derstand, read it again: if you still don’t under-
stand it, read it again: if you fail, even after three
readings, very likely your brain is getting a lit-
tle tired. In that case, put the book away, and
take to other occupations, and next day, when
you come to it fresh, you will very likely find
that it is quite easy.”

The same might be said for this volume, al-
though readers are forgiven if they take a break
for snacks after fwo readings.
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