Appendix C Quick reference

C.1 Characteristic truth tables

𝒜 ¬𝒜
T F
F T
𝒜 𝒜 𝒜 𝒜 𝒜
T T T T T T
T F F T F F
F T F T T F
F F F F T T

C.2 Symbolization

Sentential Connectives
It is not the case that P ¬P
Either P or Q (PQ)
Neither P nor Q ¬(PQ) or  (¬P¬Q)
Both P and Q (PQ)
If P then Q (PQ)
P only if Q (PQ)
P if and only if Q (PQ)
P unless Q (PQ)
Predicates
All Fs are Gs x(F(x)G(x))
Some Fs are Gs x(F(x)G(x))
Not all Fs are Gs ¬x(F(x)G(x)) or
x(F(x)¬G(x))
No Fs are Gs x(F(x)¬G(x)) or
¬x(F(x)G(x))
Only Fs are Gs x(G(x)F(x))
¬x(¬F(x)G(x))
Identity
Only c is G x(G(x)x=c)
Everything other
than c is G x(¬x=cG(x))
Everything
except c is G x(¬x=cG(x))
The F is G x(F(x)y(F(y)x=y)G(x))
It is not the case
that the F is G ¬x(F(x)y(F(y)x=y)G(x))
The F is non-G x(F(x)y(F(y)x=y)¬G(x))

C.3 Using identity to symbolize quantities

There are at least blank Fs.

one xF(x)
two x1x2(F(x1)F(x2)¬x1=x2)
three x1x2x3(F(x1)F(x2)F(x3)¬x1=x2¬x1=x3¬x2=x3)
four x1x2x3x4(F(x1)F(x2)F(x3)F(x4)¬x1=x2¬x1=x3¬x1=x4¬x2=x3¬x2=x4¬x3=x4)
n x1xn(F(x1)F(xn)¬x1=x2¬xn1=xn)

There are at most blank Fs.

One way to say ‘there are at most n Fs’ is to put a negation sign in front of the symbolization for ‘there are at least n+1 Fs’. Equivalently, we can offer:

one x1x2[(F(x1)F(x2))x1=x2]
two x1x2x3[(F(x1)F(x2)F(x3))(x1=x2x1=x3x2=x3)]
three x1x2x3x4[(F(x1)F(x2)F(x3)F(x4))(x1=x2x1=x3x1=x4x2=x3x2=x4x3=x4)]
n x1xn+1[(F(x1)F(xn+1))(x1=x2xn=xn+1)]

There are exactly blank Fs.

One way to say ‘there are exactly n Fs’ is to conjoin two of the symbolizations above and say ‘there are at least n Fs and there are at most n Fs.’ The following equivalent formulas are shorter:

zero x¬F(x)
one x[F(x)y(F(y)x=y)]
two x1x2[F(x1)F(x2)¬x1=x2y(F(y)(y=x1y=x2))]
three x1x2x3[F(x1)F(x2)F(x3)¬x1=x2¬x1=x3¬x2=x3y(F(y)(y=x1y=x2y=x3))]
n x1xn[F(x1)F(xn)¬x1=x2¬xn1=xny(F(y)(y=x1y=xn))]

C.4 Basic deduction rules for TFL

Reiteration

Line number
Subproof level
Formula
Justification
m
0
𝒜
  
0
𝒜
R m

Conjunction

Line number
Subproof level
Formula
Justification
m
0
𝒜
n
0
  
0
𝒜
I m, n
Line number
Subproof level
Formula
Justification
m
0
𝒜
  
0
𝒜
E m
Line number
Subproof level
Formula
Justification
m
0
𝒜
  
0
E m

Conditional

Line number
Subproof level
Formula
Justification
m
open subproof, 1
𝒜
AS
n
1
  
close subproof, 0
𝒜
I mn
Line number
Subproof level
Formula
Justification
m
0
𝒜
n
0
𝒜
  
0
E m, n

Negation

Line number
Subproof level
Formula
Justification
m
open subproof, 1
𝒜
AS
n
1
  
close subproof, 0
¬𝒜
¬I mn
Line number
Subproof level
Formula
Justification
m
0
¬𝒜
n
0
𝒜
0
¬E m, n

Indirect proof

Line number
Subproof level
Formula
Justification
i
open subproof, 1
¬𝒜
AS
j
1
close subproof, 0
𝒜
IP ij

Explosion

Line number
Subproof level
Formula
Justification
m
0
0
𝒜
X m

Disjunction

Line number
Subproof level
Formula
Justification
m
0
𝒜
  
0
𝒜
I m
Line number
Subproof level
Formula
Justification
m
0
𝒜
  
0
𝒜
I m
Line number
Subproof level
Formula
Justification
m
0
𝒜
i
open subproof, 1
𝒜
AS
j
1
𝒞
k
close subproof, open subproof, 1
AS
l
1
𝒞
close subproof, 0
𝒞
E m, ij, kl

Biconditional

Line number
Subproof level
Formula
Justification
i
open subproof, 1
𝒜
AS
j
1
k
close subproof, open subproof, 1
AS
l
1
𝒜
close subproof, 0
𝒜
I ij, kl
Line number
Subproof level
Formula
Justification
m
0
𝒜
n
0
𝒜
  
0
E m, n
Line number
Subproof level
Formula
Justification
m
0
𝒜
n
0
  
0
𝒜
E m, n

C.5 Derived rules for TFL

Disjunctive syllogism

Line number
Subproof level
Formula
Justification
m
0
𝒜
n
0
¬𝒜
  
0
DS m, n
Line number
Subproof level
Formula
Justification
m
0
𝒜
n
0
¬
  
0
𝒜
DS m, n

Modus Tollens

Line number
Subproof level
Formula
Justification
m
0
𝒜
n
0
¬
  
0
¬𝒜
MT m, n

Double-negation elimination

Line number
Subproof level
Formula
Justification
m
0
¬¬𝒜
0
𝒜
DNE m

Excluded middle

Line number
Subproof level
Formula
Justification
i
open subproof, 1
𝒜
AS
j
1
k
close subproof, open subproof, 1
¬𝒜
AS
l
1
close subproof, 0
LEM ij, kl

De Morgan Rules

Line number
Subproof level
Formula
Justification
m
0
¬(𝒜)
  
0
¬𝒜¬
DeM m
Line number
Subproof level
Formula
Justification
m
0
¬𝒜¬
  
0
¬(𝒜)
DeM m
Line number
Subproof level
Formula
Justification
m
0
¬(𝒜)
  
0
¬𝒜¬
DeM m
Line number
Subproof level
Formula
Justification
m
0
¬𝒜¬
  
0
¬(𝒜)
DeM m

C.6 Basic deduction rules for FOL

Universal elimination

Line number
Subproof level
Formula
Justification
m
0
𝓍𝒜(𝓍𝓍)
  
0
𝒜(𝒸𝒸)
E m

Universal introduction

Line number
Subproof level
Formula
Justification
m
0
𝒜(𝒸𝒸)
  
0
𝓍𝒜(𝓍𝓍)
I m

𝒸 must not occur in any undischarged assumption

Existential introduction

Line number
Subproof level
Formula
Justification
m
0
𝒜(𝒸𝒸)
  
0
𝓍𝒜(𝓍𝒸)
I m

Existential elimination

Line number
Subproof level
Formula
Justification
m
0
𝓍𝒜(𝓍𝓍)
i
open subproof, 1
𝒜(𝒸𝒸)
AS
j
1
  
close subproof, 0
E m, ij

𝒸 must not occur in any undischarged assumption, in 𝓍𝒜(𝓍𝓍), or in

Identity introduction

Line number
Subproof level
Formula
Justification
0
𝒸=𝒸
=I

Identity elimination

Line number
Subproof level
Formula
Justification
m
0
𝒶=𝒷
n
0
𝒜(𝒶𝒶)
  
0
𝒜(𝒷𝒶)
=E m, n
Line number
Subproof level
Formula
Justification
m
0
𝒶=𝒷
n
0
𝒜(𝒷𝒷)
  
0
𝒜(𝒶𝒷)
=E m, n

C.7 Derived rules for FOL

Line number
Subproof level
Formula
Justification
m
0
𝓍¬𝒜
  
0
¬𝓍𝒜
CQ m
Line number
Subproof level
Formula
Justification
m
0
¬𝓍𝒜
  
0
𝓍¬𝒜
CQ m
Line number
Subproof level
Formula
Justification
m
0
𝓍¬𝒜
  
0
¬𝓍𝒜
CQ m
Line number
Subproof level
Formula
Justification
m
0
¬𝓍𝒜
  
0
𝓍¬𝒜
CQ m

C.8 Rules for chains of equivalences

¬¬𝒫 𝒫 (DN)
(𝒫𝒬) (¬𝒫𝒬) (Cond)
¬(𝒫𝒬) (𝒫¬𝒬)
(𝒫𝒬) ((𝒫𝒬)(𝒬𝒫)) (Bicond)
¬(𝒫𝒬) (¬𝒫¬𝒬) (DeM)
¬(𝒫𝒬) (¬𝒫¬𝒬)
(𝒫𝒬) (𝒬𝒫) (Comm)
(𝒫𝒬) (𝒬𝒫)
(𝒫(𝒬)) ((𝒫𝒬)(𝒫)) (Dist)
(𝒫(𝒬)) ((𝒫𝒬)(𝒫))
(𝒫(𝒬)) ((𝒫𝒬)) (Assoc)
(𝒫(𝒬)) ((𝒫𝒬))
(𝒫𝒫) 𝒫 (Id)
(𝒫𝒫) 𝒫
(𝒫(𝒫𝒬)) 𝒫 (Abs)
(𝒫(𝒫𝒬)) 𝒫
(𝒫(𝒬¬𝒬)) 𝒫 (Simp)
(𝒫(𝒬¬𝒬)) 𝒫
(𝒫(𝒬¬𝒬)) (𝒬¬𝒬)
(𝒫(𝒬¬𝒬)) (𝒬¬𝒬)